SciELO - Scientific Electronic Library Online

 
vol.37 número3Efecto mitigante del ácido salicílico y nitrato en las relaciones hídricas y ajuste osmótico en maíz, cv. Lluteño expuesto a salinidadCaracterización de poblaciones de maíz en distintas condiciones ambientales mediante Análisis de Componentes Principales de tres modos índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

Compartir


Ciencia e investigación agraria

versión On-line ISSN 0718-1620

Resumen

MORA, Freddy; SCAPIM, Carlos Alberto; BAHARUM, Adam  y  TEIXEIRA DO AMARAL JUNIOR, Antonio. Generalized composite interval mapping offers improved efficiency in the analysis of loci influencing non-normal continuous traits. Cienc. Inv. Agr. [online]. 2010, vol.37, n.3, pp.83-89. ISSN 0718-1620.  http://dx.doi.org/10.4067/S0718-16202010000300007.

In genetic studies, most Quantitative Trait Loci (QTL) mapping methods presuppose that the continuous trait of interest follows a normal (Gaussian) distribution. However, many economically important traits of agricultural crops have a non-normal distribution. Composite interval mapping (CIM) has been successfully applied to the detection of QTL in animal and plant breeding. In this study we report a generalized CIM (GCIM) method that permits QTL analysis of non-normally distributed variables. GCIM was based on the classic Generalized Linear Model method. We applied the GCIM method to a F2 population with co-dominant molecular markers and the existence of a QTL controlling a trait with Gamma distribution. Computer simulations indicated that the GCIM method has superior performance in its ability to map QTL, compared with CIM. QTL position differed by 5 cM and was located at different marker intervals. The Likelihood Ratio Test values ranged from 52 (GCIM) to 76 (CIM). Thus, wrongly assuming CIM may overestimate the effect of the QTL by about 47%. The usage of GCIM methodology can offer improved efficiency in the analysis of QTLs controlling continuous traits of non-Gaussian distribution.

Palabras clave : bioinformatics; Generalized Linear Model; molecular markers; Quantitative Trait Loci (QTL).

        · resumen en Español     · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons