SciELO - Scientific Electronic Library Online

vol.41 issue2Dry matter production, chemical composition, dry matter digestibility and occurrence of fungi in Bermuda grass hay (Cynodon dactylon) under different fertilization systems or associated with pea plantings in winterA 4-component sex pheromone of the Chilean fruit leaf roller Proeulia auraria (Lepidoptera: Tortricidae) author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google


Ciencia e investigación agraria

On-line version ISSN 0718-1620


VILLANUEVA-LOPEZ, Gilberto et al. Influence of livestock systems with live fences of Gliricidia sepium on several soil properties in Tabasco, Mexico. Cienc. Inv. Agr. [online]. 2014, vol.41, n.2, pp.175-186. ISSN 0718-1620.

G. Villanueva-López, P. Martínez-Zurimendi, L. Ramírez-Avilés, F. Casanova-Lugo, and A. Jarquín-Sánchez. 2014. Influence of livestock systems with live fences of Gliricidia sepium on several soil properties in Tabasco, Mexico. Cien Inv. Agr. 41(2): 175-186. The aim of the current study was to evaluate the effects of two livestock systems, a livestock system with live fences (LSLF) of Gliricidia sepium associated with signal grass (Brachiaria decumbens) and a livestock system based on a grass monoculture (LSPM), on specific physical and chemical soil characteristics at different depths and distances from the fence. In each system, we randomly selected 9 plots of 600 m2. A completely randomized design was used with a 2 x 3 factorial arrangement in which we analyzed the influence of the livestock systems (LSLF and LSPM), soil strata (0-10, 10-20 and 2030 cm) and the interaction of both factors using a multivariate analysis of variance. In addition, we performed analysis of variance to determine the effect of distance sampling in the LSLF (0-3, 3-6 and 6-9 m). The LSLFs were associated with higher (P≤0.05) soil organic matter (OM), carbon (C) and nitrogen (N) content as well as lower pH and bulk density (BD) when compared with the LSPM. In both livestock systems, the soil OM, C and N were higher (P≤0.05) in the upper (0-10 cm) strata and in the LSLF at a 3 to 6 m distance from the live fences. In the LSLF soil, the pH and BD were similar (P>0.05) at different depths and distances from the live fences. However, the soil pH varied between soil depths in the LSPM. Regarding the physical soil properties, only the sand and clay content varied (P≤0.05) at different depths in both systems but not at different distances from the LSLF. We concluded that the LSLF presents high potential to substantially improve the physical and chemical soil properties and provide an important option for reducing soil degradation in future in livestock production systems based on pasture monoculture.

Keywords : Soil improvement; silvopastoral system; signal grass monoculture; humid tropic.

        · abstract in Spanish     · text in English     · English ( pdf )