SciELO - Scientific Electronic Library Online

vol.14 número1Contenido de duramen y de albura en Eucalyptus globulus y Acacia melanoxylon implantadas en ArgentinaEvaluation of wooden materials deteriorated by marine-wood boring organisms in the Black Sea índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados


Maderas. Ciencia y tecnología

versión On-line ISSN 0718-221X


ROJAS ESPINOZA, Gerson  y  ORTIZ IRIBARREN, Oscar. Identification of knotty core in Pinus radiata logs from CT images: Comparative Study. Maderas, Cienc. tecnol. [online]. 2012, vol.14, n.1, pp.65-77. ISSN 0718-221X.

The aim of this study was to compare the accuracy of both the maximum likelihood classifier (ML) algorithm and another one based on an artificial neural networks classifier (ANN) algorithm for knotty core identification in CT images of pruned radiata pine (Pinus radiate D. Don) logs. For this purpose, thirty pruned radiata pine logs were chosen and then scanned in an X-ray multi-slice medical scanner (Computed Tomography (CT)). From the total CT images obtained, a sample of 270 CT images was selected for this study. This CT images were classified using both methods and the thematic map obtained afterwards, were filtered by a 7 x 7 median filter. Quantitative assessment results showed that knotty core can be identified with 98.5 % and 96.3 % accuracy by using the ML and ANN classifiers respectively. Although both algorithms showed a high capacity level to detect knotty core statistical analysis showed significant differences among those accuracy values; this is an indication that the maximum likelihood classifier algorithm shows a better performance compared to the algorithms based on artificial neural networks for knotty core identification in CT images of radiata pine logs.

Palabras clave : Computed tomography (CT); radiata pine; knotty core; maximum likelihood; artificial neural networks.

        · resumen en Español     · texto en Español     · Español ( pdf )


Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons