SciELO - Scientific Electronic Library Online

vol.20 número3Comparison between three-point and four-point flexural tests to determine wood strength of Eucalyptus specimensLaboratory decay resistance of Palmyra palm wood índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google


Maderas. Ciencia y tecnología

versión On-line ISSN 0718-221X


REIS, Pamella Carolline Marques dos Reis et al. Artificial neural networks to estimate the physical-mechanical properties of amazon second cutting cycle wood. Maderas, Cienc. tecnol. [online]. 2018, vol.20, n.3, pp.343-352. ISSN 0718-221X.

Timber from the second cutting cycle may make up the majority of future crop volumetric. However, there are few studies of the physical and mechanical properties of this timber, which are important to support the consolidation of new species. This study aimed to use Artificial Neural Networks to estimate the physical and mechanical properties of wood from the Amazon, based on basic density. The properties were: shrinkage (tangential, radial and volumetric), static bending, parallel and perpendicular to the fiber compression, parallel and transverse to the fibers, Janka hardness, traction, splitting and shear. The estimate followed the tendency of the data observed for the tangential, radial and volumetric shrinkage. The network estimated the mechanical properties with significant accuracy. Distribution of errors, static bending, parallel compression and perpendicular to the fiber compression also showed significant accuracy. Artificial Neural Networks can be used to estimate the physical and mechanical properties of wood from Amazon species.

Palabras clave : Artificial intelligence; modeling; timber potential; tropical wood; wood technology.

        · texto en Inglés     · Inglés ( pdf )