SciELO - Scientific Electronic Library Online

 
vol.20 número4Calentamiento por radiofrecuencia para esterilizar Pinus radiata como material para embalajes. Parte 1: Tiempo total de tratamiento índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Maderas. Ciencia y tecnología

versión On-line ISSN 0718-221X

Resumen

MIGUEL, Eder Pereira; MELO, Rafael Rodolfo de; SERENINI JUNIOR, Laércio  y  MENEZZI, Cláudio Henrique Soares Del. Using artificial neural networks in estimating wood resistance. Maderas, Cienc. tecnol. [online]. 2018, vol.20, n.4, pp.531-543. ISSN 0718-221X.  http://dx.doi.org/10.4067/S0718-221X2018005004101.

The purpose of this research was to evaluate the potential of Artificial Neural Networks in estimating the properties of wood resistance. In order to do so, a hybrid of eucalyptus (Eucalyptus urograndis) planted in the Northern Region of the State of Mato Grosso was selected and ten trees were collected. Then, four samples of each tree were removed, totaling 40 samples, which were later subjected to non-destructive testing of apparent density, ultrasonic wave propagation velocity, dynamic modulus of elasticity obtained by ultrasound, and Janka hardness. These properties were used as estimators of resistance and compressive strength parallel to fibers, and hardness. Multilayer Perceptron networks were also employed, training 100 of them for each of the evaluated parameters. The obtained results indicated that the use of Artificial Neural Networks is an efficient tool for predicting wood resistance.

Palabras clave : Artificial intelligence; Eucalyptus urograndis; hardness; mechanical properties; non-destructive testing..

        · texto en Inglés     · Inglés ( pdf )