SciELO - Scientific Electronic Library Online

 
vol.8 número3The Incubation Process and the Strengthening of the Firm: a Study in Brazilian CompaniesA Study on the Use of the Balanced Scorecard for Strategy Implementation in a Large Brazilian Mixed Economy Company índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

Compartir


Journal of technology management & innovation

versión On-line ISSN 0718-2724

Resumen

DE SOUSA MENDES, Glauco Henrique  y  MILLER DEVOS GANGA, Gilberto. Predicting Success in Product Development: The Application of Principal Component Analysis to Categorical Data and Binomial Logistic Regression. Journal of Technology Management & Innovation [online]. 2013, vol.8, n.3, pp.83-97. ISSN 0718-2724.  http://dx.doi.org/10.4067/S0718-27242013000400008.

Critical success factors in new product development (NPD) in the Brazilian small and medium enterprises (SMEs) are identified and analyzed. Critical success factors are best practices that can be used to improve NPD management and performance in a company. However, the traditional method for identifying these factors is survey methods. Subsequently, the collected data are reduced through traditional multivariate analysis. The objective of this work is to develop a logistic regression model for predicting the success or failure of the new product development. This model allows for an evaluation and prioritization of resource commitments. The results will be helpful for guiding management actions, as one way to improve NPD performance in those industries.

Palabras clave : new product development; applied statistics; logistic regression.

        · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons