SciELO - Scientific Electronic Library Online

 
vol.21 número3Mapa denso de disparidade para imagem estereoscópica no domínio de CliffordEstudio de la organización de la sismicidad en torno al terremoto del 24 de julio del 2001 en el norte de Chile índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

Compartir


Ingeniare. Revista chilena de ingeniería

versión On-line ISSN 0718-3305

Resumen

ARACENA-PIZARRO, Diego  y  DANERI-ALVARADO, Nicolás. Keypoint detection through SIFTparallelization on GPU. Ingeniare. Rev. chil. ing. [online]. 2013, vol.21, n.3, pp.438-447. ISSN 0718-3305.  http://dx.doi.org/10.4067/S0718-33052013000300013.

This paper presents an optimization method for detecting SIFTpoints (Scale-invariant feature transform), by using a GPU parallelization, taking advantage of multiple cores of it, to divide the processes using the API's CUDA. The goal is to accelerate the computation time, which is a critical variable for the entire process of key-point's detection. The strategy used is based on two assumptions, the load balance and distribution of calculation. Each thread will perform the operations required for calculating SIFT and obtain the necessary descriptors according to an appropriate threshold. Parallelizing the process of assignment of orientation, which consists of the accumulation of all the orientations concerning a region of a key-point, assigned to each pixel in the window a thread, centered on the location of a key point, was worked inside SIFT. The tests were performed with a Notebook with Core 2 Duo 2.2GHz, 3GB of RAM and a GeForce 8600GT VGA (32 Cores) 512MB. The results obtained show that performance is achieved in terms of speed of the order 42.5 millisecond on average, considering all tests and all resolutions worked (320x240, 480x360, 640x480, 800x600, 1024x768, 1280x960), where the parallelization of SIFT, shows no significant loss of key points, compared to the sequential version.

Palabras clave : SIFT; Parallelism; GPU; CUDA; keypoints.

        · resumen en Español     · texto en Español     · Español ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons