SciELO - Scientific Electronic Library Online

 
vol.22 número1Juegos serios: apoyo a la participación ocupacional de personas mayores de 50 años basado en sistemas de tutoría inteligente índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

Compartir


Ingeniare. Revista chilena de ingeniería

versión On-line ISSN 0718-3305

Resumen

VELEZ-LANGS, Oswaldo. Feature reduction using a RBF network for classification of learning styles in first year engineering students. Ingeniare. Rev. chil. ing. [online]. 2014, vol.22, n.1, pp.140-151. ISSN 0718-3305.  http://dx.doi.org/10.4067/S0718-33052014000100013.

When having a large number of variables in the input of an Artificial Neural Network (ANN), there are different problems in the design, structure and performance of the network itself. Feature reduction is the technique of selecting a subset of 'relevant' features for building robust learning models as in an artificial neural network. In this paper, the well-known Principal Component Analysis (PCA) approach is applied in order to tackle this phenomenon in the design of an ANN with Radial Basis Functions (RBF) to be applied to classify users according to predefined learning styles. The model is developed upon a data set built from answers provided by 183 users of a computer interface to a series of 80 questions (that correspond to characteristics related to users learning style), associated to one of four (4) possible classifications/styles. This data set, without pre processing, is initially used for training an ANN with a Radial Basis Function type (RBF). Then, the Principal Component Analysis (PCA) is used for preprocessing the data set, the quantity of dimensions is reduced (80 measured characteristics) which are the input to the ANN. The main objective is to see the relevance that an ANN could have as classifier element in the User Adaptive Systems (UAS).

Palabras clave : Feature selection; interface adaptation; principal component analysis; radial basis function neural networks; user modeling.

        · resumen en Español     · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons