SciELO - Scientific Electronic Library Online

vol.45 número4Rehabilitación de centros urbanos afectados por el tsunami 2010 en la Comuna de Pelluhue, ChileEffect of β-glucan dietary levels on immune response and hematology of channel catfish Ictalurus punctatus juveniles índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google


Latin american journal of aquatic research

versión On-line ISSN 0718-560X


YANEZ, Eleuterio et al. Modelling climate change impacts on anchovy and sardine landings in northern Chile using ANNs. Lat. Am. J. Aquat. Res. [online]. 2017, vol.45, n.4, pp.675-689. ISSN 0718-560X.

Artificial Neural Networks (ANN) are adjusted to predict monthly landings of anchovy (Engraulis ringens) and sardine (Sardinops sagax) in northern Chile (18°21'-24°00'S). Fishing effort (FE), landings and twelve environmental variables are considered from 1980 to 2012. External validation for the best models using all variables showed an R2 of 95% for anchovy and 99% for sardine, with an efficiency of 0.94 and 0.96, respectively. The models were simplified by considering only FE and sea surface temperature (SST) from NOAA satellites (SST-NOAA). Using these variables, very similar fits were achieved, comparing with the previous models, maintaining their predictive capacity. Downscaled SST for A2 climate change scenario (2015-2065) obtained by statistical regionalization from the Community Climate System Model (CCSM3) from National Center for Atmospheric Research (NCAR) and three FE scenarios (2010-2012 average, + 50% and −50%), were used as inputs for ANN simplified models. For A2 future climate change scenario (2015-2065) using 2010-2012 average FE as inputs, anchovy and sardine landings would increase 2.8% and 19.2% by 2065 respectively. With FE variations (-50%), sardine landings show the highest increase (22.6%) by 2065 when FE is decreased.

Palabras clave : forecast; pelagic landings; climate change; artificial neural net works; northern Chile.

        · texto en Inglés     · Inglés ( pdf )