SciELO - Scientific Electronic Library Online

 
vol.45 número4Rehabilitación de centros urbanos afectados por el tsunami 2010 en la Comuna de Pelluhue, ChileEffect of β-glucan dietary levels on immune response and hematology of channel catfish Ictalurus punctatus juveniles índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Latin american journal of aquatic research

versión On-line ISSN 0718-560X

Resumen

YANEZ, Eleuterio et al. Modelling climate change impacts on anchovy and sardine landings in northern Chile using ANNs. Lat. Am. J. Aquat. Res. [online]. 2017, vol.45, n.4, pp.675-689. ISSN 0718-560X.  http://dx.doi.org/10.3856/vol45-issue4-fulltext-4.

Artificial Neural Networks (ANN) are adjusted to predict monthly landings of anchovy (Engraulis ringens) and sardine (Sardinops sagax) in northern Chile (18°21'-24°00'S). Fishing effort (FE), landings and twelve environmental variables are considered from 1980 to 2012. External validation for the best models using all variables showed an R2 of 95% for anchovy and 99% for sardine, with an efficiency of 0.94 and 0.96, respectively. The models were simplified by considering only FE and sea surface temperature (SST) from NOAA satellites (SST-NOAA). Using these variables, very similar fits were achieved, comparing with the previous models, maintaining their predictive capacity. Downscaled SST for A2 climate change scenario (2015-2065) obtained by statistical regionalization from the Community Climate System Model (CCSM3) from National Center for Atmospheric Research (NCAR) and three FE scenarios (2010-2012 average, + 50% and −50%), were used as inputs for ANN simplified models. For A2 future climate change scenario (2015-2065) using 2010-2012 average FE as inputs, anchovy and sardine landings would increase 2.8% and 19.2% by 2065 respectively. With FE variations (-50%), sardine landings show the highest increase (22.6%) by 2065 when FE is decreased.

Palabras clave : forecast; pelagic landings; climate change; artificial neural net works; northern Chile.

        · texto en Inglés     · Inglés ( pdf )