SciELO - Scientific Electronic Library Online

 
vol.72 número3Dinámica de Malezas en Sistemas de Intercultivo Trigo-CanolaEvaluación de Kits de Terreno para el Análisis Rápido de Purines en Lecherías del Sur de Chile índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

Compartir


Chilean journal of agricultural research

versión On-line ISSN 0718-5839

Resumen

CABRERA CAMPOS, Alcides; GUERRA BUSTILLO, Caridad W; HERRERA VILLAFRANCA, Magaly  y  SURIS CAMPOS, Moraima. Non-Parametric Statistical Methods and Data Transformations in Agricultural Pest Population Studies. Chilean J. Agric. Res. [online]. 2012, vol.72, n.3, pp.440-443. ISSN 0718-5839.  http://dx.doi.org/10.4067/S0718-58392012000300020.

Analyzing data from agricultural pest populations regularly detects that they do not fulfill the theoretical requirements to implement classical ANOVA. Box-Cox transformations and nonparametric statistical methods are commonly used as alternatives to solve this problem. In this paper, we describe the results of applying these techniques to data from Thrips palmi Karny sampled in potato (Solanum tuberosum L.) plantations. The X2 test was used for the goodness-of-fit of negative binomial distribution and as a test of independence to investigate the relationship between plant strata and insect stages. Seven data transformations were also applied to meet the requirements of classical ANOVA, which failed to eliminate the relationship between mean and variance. Given this negative result, comparisons between insect population densities were made using the nonparametric Kruskal-Wallis ANOVA test. Results from this analysis allowed selecting the insect larval stage and plant middle stratum as keys to design pest sampling plans.

Palabras clave : Kruskal-Wallis test; negative binomial distribution; Box-Cox transformations; Thrips palmi; Solanum tuberosum.

        · resumen en Español     · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons