SciELO - Scientific Electronic Library Online

vol.75 issue4Effect of adding bulking materials over the composting process of municipal solid biowastesEffect of chemical fertilization and green manure on the abundance and community structure of ammonia oxidizers in a paddy soil author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google


Chilean journal of agricultural research

On-line version ISSN 0718-5839


ZHANG, Xiangqian; QIAN, Yiliang  and  CAO, Chengfu. Effects of straw mulching on maize photosynthetic characteristics and rhizosphere soil micro-ecological environment. Chilean J. Agric. Res. [online]. 2015, vol.75, n.4, pp.481-487. ISSN 0718-5839.

Straw mulching is an effective measure to improve soil properties, crop growth, and yield. To further understand the advantage mechanisms of straw mulching, a field experiment with seven straw mulching levels (0 to 18 000 kg ha-1) was conducted to study the effects of straw mulching on maize (Zea mays L.) photosynthesis and rhizosphere soil micro-ecological environment. Results showed that maize chlorophyll content was evidently affected by straw mulching, and the highest chlorophyll content was at 12 000 kg ha-1 (M4). Straw mulching could significantly improve the photosynthetic characteristics of maize, and the difference between M4 and 0 kg ha-1 (M0) was significant. There was as trend change in soil microbe quantity; it first increased and then decreased with increasing straw mulching levels, and the most suitable straw mulching level for different types of microorganisms was 9000 kg ha-1 (M3) or M4. Straw mulching significantly enhanced soil enzyme urease, invertase, dehydrogenase, and protease activities, but when the straw mulching level reached a certain level, the effect of straw mulching was no longer apparent and even had some adverse effects at straw mulching levels higher than 15 000 kg ha-1 (M5). Yield in M4 (10 186.84 kg ha-1) was the highest compared with M0 (9365.12 kg ha-1), and yield significantly increased by 8.8%. Correlation analyses indicated that the soil microbe quantity and aforementioned enzyme activities were all significantly and positively correlated with maize chlorophyll content, photosynthetic rate, and yield. Findings suggest that straw mulching can apparently increase soil microbe quantity and enzyme activities and improve crop photosynthesis and yield; the M4 level is the most reasonable straw mulching level in this study under comprehensive consideration, and a straw mulching level that is too high (over M5) will have some negative effects.

Keywords : Chlorophyll content; enzyme activities; microbe quantity; photosynthesis; yield; Zea mays.

        · text in English     · English ( pdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License