SciELO - Scientific Electronic Library Online

 
vol.75 issue4Effects of straw mulching on maize photosynthetic characteristics and rhizosphere soil micro-ecological environmentDevelopment of dominant sequence characterized amplified region (SCAR) marker linked with plume moth (Exelastis atomosa Walsingham 1886) resistance in pigeon-pea author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Chilean journal of agricultural research

On-line version ISSN 0718-5839

Abstract

FANG, Yu et al. Effect of chemical fertilization and green manure on the abundance and community structure of ammonia oxidizers in a paddy soil. Chilean J. Agric. Res. [online]. 2015, vol.75, n.4, pp.488-496. ISSN 0718-5839.  http://dx.doi.org/10.4067/S0718-58392015000500015.

Ammonia oxidization is a critical step in the soil N cycle and can be affected by the fertilization regimes. Chinese milk-vetch (Astragalus sinicus L., MV) is a major green manure of rice (Oryza sativa L.) fields in southern China, which is recommended as an important agronomic practice to improve soil fertility. Soil chemical properties, abundance and community structures of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in a MV-rice rotation field under different fertilization regimes were investigated. The field experiment included six treatments: control, without MV and chemical fertilizer (CK); 100% chemical fertilizer (NPK); 18 000 kg MV ha-1 plus 100% chemical fertilizer (NPKM1); 18 000 kg MV ha-1 plus 40% chemical fertilizer (NPKM2); 18 000 kg MV ha-1 alone (MV); and 18 000 kg MV ha-1 plus 40% chemical fertilizer plus straw (NPKMS). Results showed that NPKMS treatment could improve the soil fertility greatly although the application of 60% chemical fertilizer. The abundance of AOB only in the MV treatment had significant difference with the control; AOA were more abundant than AOB in all corresponding treatments. The NPKMS treatment had the highest AOA abundance (1.19 x 108 amoA gene copies g-1) and the lowest abundance was recorded in the CK treatment (3.21 x 107 amoA gene copies g-1). The abundance of AOA was significantly positively related to total N, available N, NH4+-N, and NO3--N. The community structure of AOA exhibited little variation among different fertilization regimes, whereas the community structure of AOB was highly responsive. Phylogenetic analysis showed that all AOB sequences were affiliated with Nitrosospira or Nitrosomonas and all AOA denaturing gradient gel electrophoresis (DGGE) bands belonged to the soil and sediment lineage. These findings could be fundamental to improve our understanding of AOB and AOA in the N cycle in the paddy soil.

Keywords : Abundance; ammonia-oxidizing archaea (AOA); ammonia-oxidizing bacteria (AOB); Astragalus sinicus; community structure; Chinese milk vetch; soil chemical properties.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License