SciELO - Scientific Electronic Library Online

vol.13 número3Effects of the nitrification inhibitor DMPP on soil bacterial community in a Cambisol in northeast ChinaRoot-exuded malic acid versus chlorophyll fluorescence parameters in four plant species under different phosphorus levels índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados




Links relacionados


Journal of soil science and plant nutrition

versão On-line ISSN 0718-9516


BERGER, L.R et al. Plant and soil characteristics affected by biofertilizers from rocks and organic matter inoculated with diazotrophic bacteria and fungi that produce chitosan. J. Soil Sci. Plant Nutr. [online]. 2013, vol.13, n.3, pp.592-603.  Epub 27-Ago-2013. ISSN 0718-9516.

The aim of this study was to evaluate the effectiveness of a mixed biofertilizer with phosphate and potash rocks (PK biofertilizer) combined with an earthworm compound inoculated with free living diazotrophic bacteria and Cunninghamella elegans, fungi that produces chitosan, on cowpea nodulation, biomass yield and nutrient uptake. The effects of some chemical attributes from an acidic soil of the Brazilian Northeast were also studied. The treatments were as follows: a) biofertilizer enriched in N by free living diazotrophic bacteria(NPKB), applying crustaceous chitosan (ChCru) at a rate 2 mg mL-1.; b) NPKB and ChCru at a rate 4 mg mL-1.; c) NPKB and ChCru at a rate 6 mg mL-1.; d) NPKB and fungi chitosan (ChFu, 2 mg mL-1); e) NPKB+C. elegans (NPKP); f) NPKB without chitosan; g) mineral fertilizers (NPKF); and h) control without NPK fertilizer and chitosan. Biofertilizer treatments increased cowpea nodules biomass, shoot biomass, and total N, P, and K in the shoots. The largest increase was obtained with ChCru, and the highest rate was obtained with NPKP. Furthermore, biofertilizers reduced soil pH and increased the total N and available P and K. These results reveal the potential of rock biofertilizer mixed with earthworm compound inoculated with free living diazotrophic bacteria and C. elegans (fungi chitosan) for plant production and nutrient uptake. The biofertilizer may be an alternative for NPK fertilization that slows the release of nutrients, favoring longterm soil fertility.

Palavras-chave : Biopolymer; free living diazotrophic bacteria; Cunninghamella elegans; nitrogen fixation; Vigna unguiculata.

        · texto em Inglês     · Inglês ( pdf )


Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons