SciELO - Scientific Electronic Library Online

 
vol.14 número2How to improve yield and quality of potatoes: effects of two rates of urea N, urease inhibitor and Cytozyme nutritional program índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Journal of soil science and plant nutrition

versión On-line ISSN 0718-9516

Resumen

ZHAO, Z.; JIANG, G.  y  MAO, R.. Effects of particle sizes of rock phosphate on immobilizing heavy metals in lead zinc mine soils. J. Soil Sci. Plant Nutr. [online]. 2014, vol.14, n.2, pp.258-266.  Epub 12-Mayo-2014. ISSN 0718-9516.  http://dx.doi.org/10.4067/S0718-95162014005000021.

Phosphate-induced immobilization is recognized as one of effective in situ remediation methods for heavy metal contaminated soils. Phosphate-based minerals that adsorb, chelate, or complex heavy metals in soil were greatly concerned as effective heavy metals immobilizing materials. Effects of particle sizes of rock phosphate on immobilizing heavy metals in Pb-Zn mine soils by a greenhouse experiment was conducted. Rock phosphate was added to a Pb-Zn mine soil with four different particle sizes, D97<101.43 µm (UP), D97<71.12 µm (P1), D97<36.83 ìm (P2) and D97< 4.26 µm (P3) (the diameters of 97% of the particles were less than 4.26 µm.), and 2 rates (2.5% and 5%). Lolium prenne, L. were grown in the treated soils. Compared to the control, addition of rock phosphate (RP) decreased metal contents in both roots and shoots significantly. Pb contents in shoots decreased by 19.59%-37.80% by different particle sizes at the rate of 5%, reaching lowest level at lowest particle size P3. Zn contents in shoots decreased by 13.47% -13.75 %, Cu in roots was decreased by 18.46%-67.98% and in shoots by 16.82%-32.61%, and Cd in roots decreased by 31.03%-74.23%. The results indicated that, RP can reduce the phytoavailability of Pb, Zn, Cu and Cd in soil significantly by immobilization and the effects strengthened with the decrease of particle size and increasing the rate of addition.

Palabras clave : Particle size; rock phosphates (RP); immobilization; heavy metals; Pb-Zn mine soil.

        · texto en Inglés     · Inglés ( pdf )