SciELO - Scientific Electronic Library Online

vol.14 número3Soil microbial properties in Eucalyptus grandis plantations of different ages índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados




Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google


Journal of soil science and plant nutrition

versão On-line ISSN 0718-9516


ARANDA, V  e  COMINO, F. Soil organic matter quality in three Mediterranean environments (a first barrier against desertification in Europe). J. Soil Sci. Plant Nutr. [online]. 2014, vol.14, n.3, pp.743-760.  Epub 02-Ago-2014. ISSN 0718-9516.

The aim of this study was to establish the effect of parent material, climate conditions and vegetation type on soil organic matter (SOM) quality in different Mediterranean environments as an essential step for assessing soil stability; ecosystems in the first barrier against desertification in the western Mediterranean region. Thirty-six samples were taken from the organic-mineral horizon of unreclaimed soils with calcareous, acid metamorphic and calcareous/volcanic substratums; and from beneath three vegetation types (natural forests, reforested forests and scrublands) in areas of significant ecological value. The humus fractions and soil respiratory activity of bulk soil samples were studied, and some structural features of the humic acids extracted were characterized by elemental analysis and visible and infrared spectroscopies. Results indicate that SOM in the surface horizons of the calcareous and calcareous/volcanic areas showed higher biogeochemical transformation, where microbial synthesis in humic acids formation, including condensation mechanisms, prevails. In contrast, the acid metamorphic area showed the greatest differences, and would be considered more fragile in terms of organic matter stability to changes in the biogeochemical system. The results also indicate some differences due to the type of vegetation on soil humus chemistry. Under reforested forests of Pinus in an edaphic acid environment, humic acids showed a marked aliphatic character, displayed higher 2920 cm-1 IR band, well defined typical lignin patterns, and higher E4/E6 ratio, i.e., accumulation of inherited macromolecular substances. The SOM beneath scrubland and natural Quercus forests may be said to be more decomposed (active breakdown of biomacromolecules) than beneath Pinus, humic acids exhibited higher aromaticity and were associated with accumulation of newly formed perylenequinonic chromophors of fungal origin, i.e., was at more advanced and complex stages of humification.

Palavras-chave : Soil humic acids; humification mechanisms; reforested forests; Mediterranean mountains.

        · texto em Inglês     · Inglês ( pdf )