SciELO - Scientific Electronic Library Online

vol.15 número2Availability of Mn, Zn and Fe in the rhizosphereBiogeochemical processes at soil-root interface índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados




Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google


Journal of soil science and plant nutrition

versão On-line ISSN 0718-9516


DIEZ, M.C et al. Rhizosphere effect on pesticide degradation in biobeds under different hydraulic loads. J. Soil Sci. Plant Nutr. [online]. 2015, vol.15, n.2, pp.410-421.  Epub 30-Abr-2015. ISSN 0718-9516.

Interactions between microorganisms and root exudates in a biobed system with vegetal (grass) cover could enhance pesticide degradation. Otherwise, a high water load may generate high concentrations of pesticides in lixiviates. We studied the effect of the vegetal cover on the degradation of a mixture of atrazine (ATZ), chlorpyrifos (CHL) and iprodione (IPR) (35 mg L-1 each) in a biobed system operated with two different hydraulic loads (0.6 and 1.2 L of tap water per day). The concentration of the pesticides and their main metabolites were measured in the lixiviates during 60 days, as well as in the biomixtures at the end of the study. Dehydrogenase activity in the biomixtures and organic acid exudation from the vegetal cover were also analysed. The vegetal cover diminished the lixiviation of pesticides and their metabolites mainly at the lower hydraulic load used. The degradation of the pesticides was high (>95%) and increased in biobeds with vegetal cover and low hydraulic load. Degradation metabolites of CHL and IPR were formed during pesticide degradation; however they were degraded in the biobed and were not detected in lixiviates at the end of the study. In general, an increase in organic acid exudation by vegetal cover was observed caused by chemical stress after pesticide application. The increase was similar at both hydraulic loads. Efficient colonisation of wheat straw by fungi was observed by confocal microscopy.

Palavras-chave : Biobed; pesticide leaching; root exudates; organic acids.

        · texto em Inglês     · Inglês ( pdf )


Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons