SciELO - Scientific Electronic Library Online

 
vol.16 número2Influence of clay concentration, residue C/N and particle size on microbial activity and nutrient availability in clay-amended sandy soilCan biochar increase the bioavailability of phosphorus? índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Journal of soil science and plant nutrition

versão On-line ISSN 0718-9516

Resumo

VELASQUEZ, G et al. Fertilizer effects on phosphorus fractions and organic matter in Andisols. J. Soil Sci. Plant Nutr. [online]. 2016, vol.16, n.2, pp.294-309.  Epub 04-Maio-2016. ISSN 0718-9516.  http://dx.doi.org/10.4067/S0718-95162016005000024.

Andisols are characterized by a high phosphorus (P) fixation capacity, which is a limiting factor for plant production. Continuous application of P fertilizer may result in an accumulation of P associated with soil organic matter (SOM), which further acts to reduce the availability of the added P. The objectives of this study were (1) to evaluate the impact of P fertilizer inputs on the quantities and chemical forms of P, and (2) to investigate relationships between P forms SOM and land use. Topsoil (0-20 cm) and subsoil (20-40 cm) samples were taken from two Andisols series under grassland and arable cropping. Soil P forms were determined using sequential fractionation, while SOM analysis involved a combination of 13C nuclear magnetic resonance (NMR) spectroscopy and pyrolysis-GC-mass spectrometry. Fertilization increased total P, total organic P, organic carbon, and inorganic P fractions, mainly in arable soils. Labile P was higher in grassland (3% of total P) than in arable soils (1% of total P). A clear effect of fertilization was observed on organic matter compounds measured by pyrolysis in both soil depths. Interestingly, the polysaccharide-derived compounds increased in fertilized soils and lipid-derived compounds decreased. Thus fertilization principally affected labile P and labile SOM forms, whereas recalcitrant forms of P and SOM remained unchanged.

Palavras-chave : Soil phosphorus fractionation; 13C nuclear magnetic resonance; pyrolysis; phosphorus fertilizer.

        · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons