SciELO - Scientific Electronic Library Online

 
vol.16 número4Effects of water, salt and nitrogen stress on sunflower (Helianthus annuus L.) at different growth stagesEffectiveness of native arbuscular mycorrhizal consortia on the growth of Agave inaequidens índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Journal of soil science and plant nutrition

versión On-line ISSN 0718-9516

Resumen

ZHU, Hongfen et al. Relative influence of soil chemistry and topography on soil available micronutrients by structural equation modeling. J. Soil Sci. Plant Nutr. [online]. 2016, vol.16, n.4, pp.1038-1051. ISSN 0718-9516.  http://dx.doi.org/10.4067/S0718-95162016005000076.

Soil chemical and topographic properties are two important factors influencing available micronutrient distribution of soil in the horizontal dimension. The objective of this study was to explore the relative influence of soil chemistry (including soil pH, soil organic matter, total nitrogen, available phosphorus, and available potassium) and topography (including elevation, slope, aspect, and wetness index) on the availability of micronutrients (Fe, Mn, Cu, Zn, and B) using structural equation modeling (SEM) at the watershed scale. To do this, levels of soil micronutrients, pH, soil organic matter, total nitrogen, available phosphorus, available potassium, and topographic factors were measured at 523 sampling points of Fanshi County on the Chinese Loess Plateau, and the spatial distribution of soil available micronutrients were analyzed by geostatistical method. The results showed that topography had both direct effects and indirect effect on some soil micronutrients, while the indirect effect indicated effects from topography on soil chemistry and then further on micronutrient concentration. Soil chemistry had direct effects on levels of all soil micronutrients, and topography had direct effects on levels of all micronutrients except for Cu and B, and indirect effects on Fe, Zn, and B. The direct effect of soil chemistry on Fe levels was greater than the total effects (including both direct and indirect) of topography. Topography had a stronger direct effect on Mn than soil chemistry, and topography had less direct but stronger total effects on Zn than soil chemistry. Soil chemistry directly influenced both Cu and B, but topography only influenced B in an indirect manner. The semivariance indicated that the micronutrients had moderate spatial dependency except for B which had weak spatial dependency. Within the spatial distribution of the micronutrients, there was a zone in the middle of the watershed with lower values than in the northern and southern areas for Fe, Mn, Zn, and B, which were related to the characteristics of topography and soil chemistry. These results may guide the management of soil micronutrients of the Chinese Loess Plateau and other similar regions in the world.

Palabras clave : Structural equation modeling (SEM); spatial distribution; standardized path coefficients (SPCs); latent variables; manifest variables.

        · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons