SciELO - Scientific Electronic Library Online

 
vol.18 número2Nutritional status and production of noni plants fertilized with manure and potassiumEarly-stage changes in chemical phosphorus speciation induced by liming deforested soils índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Journal of soil science and plant nutrition

versión On-line ISSN 0718-9516

Resumen

ANANTHA, Krishna Chaitanya et al. Carbon dynamics, potential and cost of carbon sequestration in double rice cropping system in semi arid southern India. J. Soil Sci. Plant Nutr. [online]. 2018, vol.18, n.2, pp.418-434. ISSN 0718-9516.  http://dx.doi.org/10.4067/S0718-95162018005001302.

Studying the dynamics of soil organic carbon (SOC) is important for understanding the mechanistic pathways of C stabilization into different SOC pools. An attempt was, therefore, made to assess the impact of double rice cropping system with different levels of fertilizers and in combination with organics on C sequestration and its stabilization in an Inceptisol using a 14-year old experiment at Jagtial under semi-arid climate in India. Total organic carbon (TOC) allocated into different pools in order of very labile > less labile > non labile > labile, constituting about 41.4, 20.6, 19.3 and 18.7%, respectively. In comparison with control, system receiving farmyard manure (FYM-10 Mg ha-1 season-1) alone showed greater C build up (40.5%) followed by 100% NPK+FYM (120:60:40 kg N,P,K ha-1+5 Mg FYM ha-1season-1)(16.2%). In fact, a net depletion of carbon stock was observed with 50% NPK (-1.2 Mg ha-1) and control (-1.8 Mg ha-1) treatments. Only 28.9% of C applied through FYM was stabilized as SOC. A minimal input of 2.34 Mg C ha-1 y-1 is needed to maintain SOC level. Treatments with organics showed a higher carbon management index, and microbial biomass and other labile pools of SOC. Results also indicated that100% NPK+FYM could maintain yield sustainability with a lower cost of carbon sequestration.

Palabras clave : Rice; SOC pool; farmyard manure; C sequestration; stabilization; critical carbon input; cost of carbon sequestration.

        · texto en Inglés     · Inglés ( pdf )