SciELO - Scientific Electronic Library Online

 
vol.12 número1An Improved Convergence and Complexity Analysis for the Interpolatory Newton MethodA Short Note On M-Symmetric Hyperelliptic Riemann Surfaces índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

Compartir


Cubo (Temuco)

versión On-line ISSN 0719-0646

Resumen

ARGYROS, Ioannis K  y  HILOUT, Saïd. Convergence Conditions for the Secant Method. Cubo [online]. 2010, vol.12, n.1, pp.161-174. ISSN 0719-0646.  http://dx.doi.org/10.4067/S0719-06462010000100014.

We provide new sufficient convergence conditions for the convergence of the Secant method to a locally unique solution of a nonlinear equation in a Banach space. Our new idea uses recurrent functions, Lipschitz-type and center-Lipschitz-type instead of just Lipschitz-type conditions on the divided difference of the operator involved. It turns out that this way our error bounds are more precise than earlier ones and under our convergence hypotheses we can cover cases where earlier conditions are violated. Numerical examples are also provided in this study.

Palabras clave : Secant method; Banach space; majorizing sequence; divided difference; Fréchet-derivative.

        · resumen en Español     · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons