SciELO - Scientific Electronic Library Online

 
vol.142 número8Prostatitis crónica/síndrome de dolor pélvico crónico: Un reto terapéuticoObesidad y cáncer índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Revista médica de Chile

versión impresa ISSN 0034-9887

Rev. méd. Chile vol.142 no.8 Santiago ago. 2014

http://dx.doi.org/10.4067/S0034-98872014000800019 

Cartas al Editor

 

Comparación de variables estadísticas: clavando un tornillo

Statistical variable comparison: nailing a screw

 

Jorge Osada1,2,a, Lupe Vidal2,a, Franco León1,b

1 Unidad de Epidemiología Clínica, Facultad de Medicina, Universidad Católica Santo Toribio de Mogrovejo. Chiclayo, Perú.
2 Unidad de Epidemiología Clínica, Facultad de Medicina Alberto Hurtado, Universidad Peruana Cayetano Heredia. Lima, Perú
a Médico Epidemiólogo.
b Médico Internista.

Correspondencia a:


 

Sr. Editor:

El uso de pruebas estadísticas para realizar comparaciones es un ejercicio que se realiza de manera regular en la mayoría de los trabajos de investigación analíticos de nuestra área1. Es común escuchar los resultados de una “t de Student” o un χ2, mediante la presentación e interpretación de sus respectivos valores “p”. A pesar de esto, la selección, uso e interpretación de estas herramientas es frecuentemente mal realizada2.

En nuestra experiencia como docentes universitarios, tanto de pregrado como postgrado, hemos apreciado que la mayoría de los errores en el uso de estas herramientas, nacen de un entendimiento limitado e inadecuado de su funcionamiento, reforzado por una falta de aplicación de las mismas en ejercicios prácticos o en trabajos de investigación.

Un problema común aparece cuando se presentan a los alumnos las tablas de resumen de dichas pruebas estadísticas (posiblemente las partes más leídas de los libros de textos) en las que se menciona la necesidad de algún tipo de variable para realizar una comparación mediante una prueba específica, por ejemplo una variable cualitativa dicotómica y otra cuantitativa para una t de Student. En estos casos, muchos alumnos entienden que se están comparando ambas variables entre sí, lo que produce un error importante en la interpretación de los resultados.

Para poder entender una comparación, debemos pensar que se necesitan 2 datos para hacerla. Cuando evaluamos diferencias, primero debemos identificar a quiénes estamos comparando (grupos de comparación) y posteriormente debemos saber qué estamos comparando entre dichos grupos (Punto de comparación). La necesidad de estos datos se mantiene constante en las diferentes pruebas estadísticas básicas que evalúan diferencias entre grupos, necesitando variables que nos brinden esta información.

Hay que recordar que las pruebas más comunes no indican si uno de estos es mayor o menor, sino sólo una diferencia estadística entre grupos. Así mismo, en algunos casos, las hipótesis se pueden plantear en diferentes sentidos: con una cola, mayor o menor, como con dos colas.

Algo interesante que también debemos recordar es la distribución de frecuencias de los “puntos de comparación”, en el caso de las variables cuantitativas, ya que éstas nos indican la necesidad de usar herramientas paramétricas o no paramétricas para el análisis. Por ejemplo, podemos hallar que la “t de Student” tiene una idea muy similar a la “U de Mann Whitney” y que su uso depende de la forma de la distribución de su punto de comparación.

Es de gran importancia poder entender el funcionamiento básico de las pruebas estadísticas, usadas para reportar nuestros hallazgos y conclusiones, ya que su mal uso puede afectar de forma importante los resultados encontrados y la validez de la investigación. El uso inteligente de las pruebas estadísticas no implica sólo su presencia, sino su entendimiento básico y la presentación de sus resultados de forma adecuada para el lector3. Lo expresado se ilustra en la Tabla.

 

Funcionamiento e interpretación simplificados de pruebas estadísticas de comparación frecuentes

 

 

 

Referencias

1. Díaz V. Errores estadísticos frecuentes al comparar dos poblaciones. Rev Chil Nutr 2009; 36 (4): 1136-8.         [ Links ]

2. Windish DM, Huot SJ, Green ML. Medicine residents’ understanding of the biostatistics and results in the medical literature. JAMA 2007; 298: 1010-22.         [ Links ]

3. Sarria M, Silva L. Las pruebas de significación estadística en tres revistas biomédicas. Rev Panam Salud Pública 2004; 15 (5): 300-6.         [ Links ]

 


El presente trabajo fue autofinanciado por los autores.

Conflictos de intereses: ninguno por declarar.

Correspondencia a: Dr. Jorge Osada Liy
Dirección postal: Ca. Alfredo Salazar 472 depto. 201, San Isidro. Lima, Perú. Teléfono: 992304701.
E-mail: lenizjaviera@gmail.com

Conflictos de intereses:

Jorge Osada

Lupe Vidal

Franco León

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons