SciELO - Scientific Electronic Library Online

 
vol.21 número1SOME SPECIAL KLEINIAN GROUPS AND THEIR ORBIFOLDSREGULARITY OF SOLUTIONS OF PARTIAL NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS WITH UNBOUNDED DELAY índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

Compartir


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) v.21 n.1 Antofagasta mayo 2002

http://dx.doi.org/10.4067/S0716-09172002000100004 

Proyecciones
Vol. 21, N o 1, pp. 51-63, May 2002.
Universidad Católica del Norte
Antofagasta - Chile

ON FUZZY WEAKLY SEMIOPEN
FUNCTIONS

 

MIGUEL CALDAS
Universidade Federal Fluminense, Brasil

 

GOVINDAPPA NAVALAGI
G. H. College, India

and

 

RATNESH SARAF
Govt. K. N. G. College - India

 

Abstract

In this paper, we introduce and characterize fuzzy weakly semiopen functions between fuzzy topological spaces as natural dual to the fuzzy weakly semicontinuous functions and also study these functions in relation to some other types of already known functions.

2000 Math. Subject Classification : Primary: 54A40.

Key Words and Phrases : Fuzzy semi-open sets, fuzzy weakly open functions, fuzzy extremally disconnected spaces, fuzzy almost compact spaces.

References

[1] K.K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J.Math. Anal. Appl., 82, pp. 14-32, (1981).        [ Links ]

[2] R.N. Bhoumik and A. Mukherjee, Fuzzy weakly completely con-tinuous functions, Fuzzy Sets and Systems, 55, pp. 347-354, (1993).        [ Links ]

[3] A.S. Bin Shahna, On fuzzy strong semicontinuity and fuzzy pre-continuity, Fuzzy Sets and Systems, 44, pp. 303-308, (1991).        [ Links ]

[4] C.L.Chang, Fuzzy topological spaces, J. Math. Anal Appl., 24, pp. 182-192, (1968).         [ Links ]

[5] D.Coker and A.H.Es, On Fuzzy S-closed spaces (Preprint).        [ Links ]

[6] S.Ganguly and S. Saha, A note on semi-open sets in fuzzy topo-logical spaces, Fuzzy Sets and Systems, 18, pp. 83-96, (1986).        [ Links ]

[7] B. Ghosh, Semi-continuous and semi-closed mappings and semi-connectedness in fuzzy setting, Fuzzy Sets and Systems, 35, pp. 345-355, (1990).        [ Links ]

[8] A.S. Mashhour, M.H. Ghanim and M.A. Fath Alla, On fuzzy non-continuous mappings, Bull. Cal. Math. Soc.,78, pp. 57-69,(1986).        [ Links ]

[9] P.P. Ming and L.Y. Ming, Fuzzy topology I. Neighborhood structure of fuzzy point and Moore-Smith convergence, J.Math. Anal. Appl., 76, pp. 571-594, (1980).        [ Links ]

[10] M.N. Mukherjee and S.P. Sinha, fuzzy µ -closure operator on fuzzy topological spaces, Internat. J. Math. I& Math. Sci. 14, pp. 309-314, (1991).        [ Links ]

[11] S. Nanda, On fuzzy topological spaces, Fuzzy Sets and Systems, 19(1986), pp. 193- 197, (1986).        [ Links ]

[12] J. H. Park, Y. B. Park and J. S. Park, Fuzzy weakly open map-pings and fuzzy RS-compact sets, Far East J. Math. Sci. Special Vol., Part II, pp. 201-212, (1997).        [ Links ]

[13] D. A. Rose, On weak openness and almost openness, In-ternt. J.Math. I& Math. Sci., 7, pp. 35-40, (1984).        [ Links ]

[14] T. H.Yalva¸c, Semi-interior and semi-closure of fuzzy set, J.Math. Anal.Appl., 132, pp. 356-364, (1988).        [ Links ]

[15] L. A. Zadeh, Fuzzy sets, Inform. and Control, 8, pp. 338-353, (1965).        [ Links ]

Received : December 2001.

M. Caldas
Departamento de Matemática Aplicada
Universidade Federal Fluminense
Rua M´ario Santos Braga, s/n
CEP: 24020-140
Niteroi
RJ Brasil
e-mail: gmamccs@vm.uff.br

G. B.Navalagi
Department of Mathematics
KLE Societys
G. H.College, Haveri-581110
Karnataka
India
e-mail: gnavalagi@hotmail.com

and

R. K. Saraf
Department of Mathematics
Govt. K. N. G. College
DAMOH-470661, M.P.
India

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons