SciELO - Scientific Electronic Library Online

 
vol.22 número2ORLICZ - PETTIS THEOREMS FOR MULTIPLIER CONVERGENT OPERATOR VALUED SERIES índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

Compartir


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) v.22 n.2 Antofagasta ago. 2003

http://dx.doi.org/10.4067/S0716-09172003000200005 

Proyecciones
Vol. 22, N o 2, pp. 145-159, August 2003.
Universidad Católica del Norte
Antofagasta - Chile

NON - AUTONOMOUS INHOMOGENEOUS
BOUNDARY CAUCHY PROBLEMS AND
RETARDED EQUATIONS

M. FILALI AND M. MOUSSI
Universidad de Mohamed I, MOROCCO

Abstract
In this paper we prove the existence and the uniqueness of the clas-sical
solution of non-autonomous inhomogeneous boundary Cauchy
problems, and that this solution is given by a variation of constants
formula. This result is applied to show the existence of solutions of a
retarded equation.


subjclass : 34G10; 47D06
keywords : Boundary Cauchy problem, evolution families, clas-sical
solution, well-posedness, variation of constants formula, retarded
equation.

References

[1] K. J. Engel and R. Nagel: One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics 194, Springer-Verlag 2000.

[2] G. Greiner: Perturbing the boundary conditions of a generator, Hous-ton J. Math. 13, pp. 213-229, (1987).

[3] G. Greiner: Semilinear boundary conditions for evolution equations of hyperbolic type, Lecture Notes in Pure and Appl. Math. 116 Dekker, New York, pp. 127-153, (1989).

[4] R. Grimmer and E. Sinestrari: Maximum norm in one-dimensional hyperbolic problems, Diff. Integ. Equat. 5, pp. 421-432, (1992).

[5] T. Kato: Linear evolution equations of ”hyperbolic” type, J. Fac. Sci. Tokyo, 17, pp. 241-258, (1970).

[6] H. Kellermann: Linear evolution equations with time dependent domain, Semesterbericht Funktionalanalysis Tübingen, Wintersemester, pp. 15-44, (1985/1986).

[7] N. T. Lan: On nonautonomous Functional Differential Equations, J. Math. Anal. Appl. 239, pp. 158-174, (1999).

[8] N. T. Lan and G. Nickel: Time-Dependent operator matrices and in-homogeneous Cauchy Problems, Rend. Circ. Mat. Palermo XLVII, pp. 5-24, (1998).

[9] R. Nagel and E. Sinestrari: Inhomogeneous Volterra integrodifferential equations for Hille-Yosida operators, Marcel Dekker, Lecture Notes Pure Appl. Math. 150, pp. 51-70, (1994).

[10] A. Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations, New York Springer (1983).

[11] N. Tanaka: Quasilinear evolution equations with non-densely defined operators, Diff. Int. Eq. 9, pp. 1067-1106, (1996).Received : January, 2003.

M. Filali
Department of Mathematics
Faculty of Sciences
University Mohamed I
P. O. Box 524
60000 Oujda
Morocco
filali@sciences.univ-oujda.ac.ma

and

M. Moussi
Department of Mathematics
Faculty of Sciences
University Mohamed I
P. O. Box 524
60000 Oujda
Morocco
moussi@sciences.univ-oujda.ac.ma

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons