Servicios Personalizados
Revista
Articulo
Indicadores
-
Citado por SciELO
-
Accesos
Links relacionados
Compartir
Proyecciones (Antofagasta)
versión impresa ISSN 0716-0917
Proyecciones (Antofagasta) v.22 n.2 Antofagasta ago. 2003
http://dx.doi.org/10.4067/S0716-09172003000200005
Proyecciones
Vol. 22, N o 2, pp. 145-159, August 2003.
Universidad Católica del Norte
Antofagasta - Chile
NON - AUTONOMOUS INHOMOGENEOUS
BOUNDARY CAUCHY PROBLEMS AND
RETARDED EQUATIONS
M. FILALI AND M. MOUSSI
Universidad de Mohamed I, MOROCCO
Abstract |
In this paper we prove the existence and the uniqueness of the clas-sical solution of non-autonomous inhomogeneous boundary Cauchy problems, and that this solution is given by a variation of constants formula. This result is applied to show the existence of solutions of a retarded equation. subjclass : 34G10; 47D06 keywords : Boundary Cauchy problem, evolution families, clas-sical solution, well-posedness, variation of constants formula, retarded equation. |
References
[1] K. J. Engel and R. Nagel: One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics 194, Springer-Verlag 2000.
[2] G. Greiner: Perturbing the boundary conditions of a generator, Hous-ton J. Math. 13, pp. 213-229, (1987).
[3] G. Greiner: Semilinear boundary conditions for evolution equations of hyperbolic type, Lecture Notes in Pure and Appl. Math. 116 Dekker, New York, pp. 127-153, (1989).
[4] R. Grimmer and E. Sinestrari: Maximum norm in one-dimensional hyperbolic problems, Diff. Integ. Equat. 5, pp. 421-432, (1992).
[5] T. Kato: Linear evolution equations of hyperbolic type, J. Fac. Sci. Tokyo, 17, pp. 241-258, (1970).
[6] H. Kellermann: Linear evolution equations with time dependent domain, Semesterbericht Funktionalanalysis Tübingen, Wintersemester, pp. 15-44, (1985/1986).
[7] N. T. Lan: On nonautonomous Functional Differential Equations, J. Math. Anal. Appl. 239, pp. 158-174, (1999).
[8] N. T. Lan and G. Nickel: Time-Dependent operator matrices and in-homogeneous Cauchy Problems, Rend. Circ. Mat. Palermo XLVII, pp. 5-24, (1998).
[9] R. Nagel and E. Sinestrari: Inhomogeneous Volterra integrodifferential equations for Hille-Yosida operators, Marcel Dekker, Lecture Notes Pure Appl. Math. 150, pp. 51-70, (1994).
[10] A. Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations, New York Springer (1983).
[11] N. Tanaka: Quasilinear evolution equations with non-densely defined operators, Diff. Int. Eq. 9, pp. 1067-1106, (1996).Received : January, 2003.
M. Filali
Department of Mathematics
Faculty of Sciences
University Mohamed I
P. O. Box 524
60000 Oujda
Morocco
filali@sciences.univ-oujda.ac.ma
and
M. Moussi
Department of Mathematics
Faculty of Sciences
University Mohamed I
P. O. Box 524
60000 Oujda
Morocco
moussi@sciences.univ-oujda.ac.ma