SciELO - Scientific Electronic Library Online

 
vol.24 número2A NEW FORM OF FUZZY ß-COMPACTNESS índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

Compartir


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) v.24 n.2 Antofagasta ago. 2005

http://dx.doi.org/10.4067/S0716-09172005000200001 

 

Proyecciones
Vol. 24, No 2, pp. 89-104, August 2005.
Universidad Católica del Norte
Antofagasta – Chile

 

NONRESONANCE BETWEEN TWO EIGENVALUES NOT NECESSARILY CONSECUTIVE

 

A. R. EL AMROUSS

University Mohamed I, Morocco

Correspondencia a :


ABSTRACT

In this paper we study the existence of solutions for a semilinear elliptic problem in case two eigenvalues are not necessarily consecutive.


RÉSUMÉ : Dans cet article, nous étudions l’existence des solutions entre deux valeurs propres non nécessairement consecutives d’un probléme semi-linéaire elliptique.

Key words : Variational elliptic problems - Resonance.


 

REFERENCES

[1] S. Ahmad, A. C. Lazer, & J. L. Paul, Elementary critical point theory and perturbations of elliptic boundary value problems at resonance, Indiana Univ.math. J. 25, pp. 933-944, (1976).        [ Links ]

[2] H. Amman, & G. Mancini, Some applications of monotone operator theory to resonance problems, Nonlinear Analysis T. M. A. 3, pp. 815-830, (1979).        [ Links ]

[3] P. Bartolo, V. Benci & D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonlinear Analysis 7, pp. 981-1012, (1983).        [ Links ]

[4] H. Berestycki & D. G. De Figueiredo, Double resonance in semilinear elliptic problems, Communs partial diff. Eqns 6, pp. 91-120, (1981).        [ Links ]

[5] G. Cerami, Un criterio de esistenza per i punti critici su varietá ilimitate, Rc. Ist. Lomb. Sci. Lett . 121, pp. 332-336, (1978).        [ Links ]

[6] D. G. Costa & A. S. Oliveira, Existence of solution for a class of semilinear elliptic problems at double resonance, Bol. Soc. Bras. Mat. 19 , pp. 21-37, (1988).        [ Links ]

[7] D. G. De Figueiredo & J. P. Gossez, Conditions de non résonance pour certains problémes elliptiques semi-linéaires, C. R. Acad. Sc. Paris, 302, pp. 543-545, (1986).        [ Links ]

[8] C. L. Dolph, Nonlinear integral equations of the Hammertein type, Trans. Amer. Math. SOC., 66, pp. 289-307, (1949).        [ Links ]

[9] D. Del Santo et P. Omari, Nonresonance conditions on the potentiel for a semilinear elleptic problem, J. Differential Equations, 108, pp. 120-138, (1994).        [ Links ]

[10] A. R. El Amrouss & M. Moussaoui, Resonance at two consecutive eigenvalues for semilinear elliptic problem: A variational approach, Ann. Sci. Math. Qubec 23, no. 2, pp. 157-171, (1999).        [ Links ]

[11] J. P. Gossez & M. Moussaoui, A note on resonance between consecutive eigenvalues for a semilinear elliptic problem, Pitman Res. Notes in Math., 343, pp. 155-166, (1996).        [ Links ]

[12] E. M. Landesman & A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19, pp. 609-623, (1970).        [ Links ]

[13] J. Mawhin, & J. R.Ward, Nonresonance and existence for nonlinear elliptic boundary value problems, Nonlinear Analysis T. M. A., pp. 677-684, (1981).        [ Links ]

[14] P. Omari & F. Zanolin, Resonance at two consecutive eigenvalues for semilinear elliptic equations, Annali di matematica pura ed applicata, pp. 181-198, (1993).        [ Links ]

Received : June 2004. Accepted : August 2005

A. R. EL AMROUSS

Department of Mathematics
Faculty of sciences
University Mohamed I
Oujda
Morocco
e-mail: amrouss@sciences.univ-oujda.ac.ma

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons