Servicios Personalizados
Revista
Articulo
Indicadores
-
Citado por SciELO
-
Accesos
Links relacionados
Compartir
Proyecciones (Antofagasta)
versión impresa ISSN 0716-0917
Proyecciones (Antofagasta) v.24 n.2 Antofagasta ago. 2005
http://dx.doi.org/10.4067/S0716-09172005000200005
Proyecciones
STRATEGY FOR TO STABILIZE NON LINEAR SYSTEMS THROUGH DIRECTIONAL CONTROLS*
VÍCTOR DELGADO Universidad Austral de Chile. ABSTRACT For a non linear system, with an isolated and non asymptotically stable equilibrium point, we had obtained a control strategy which disturb the system so that the dynamic move locally towards the equilibrium point. We consider the linearization of the system and feedback directional controls. KEYWORKS : Linearly equivalent systems, directional feedback controls.
REFERENCES [1] Balachandran-Dauer, Controllability of Nonlinear Systems to Affine Manifolds, J. Optim.Th. and Appl., Vol 64 #1, pp. 15-27, (1990) [ Links ] [2] Beltrami E., Mathematics for Dynamic Modelling, Academic Press, Inc. (1987). [ Links ] [3] Chukwu, E. N., Total Controllability to Affine Manifolds of Control Systems, J. Optim. Th. and Appl., Vol # 42, pp. 181-199, (1864). [ Links ] [4] Delgado V., Equivalencia lineal de Sistemas de Control y su interpretación en algunos modelos biomatemáticos, Memoria VII Congr. Internacional de Biomat. pp. 72-79 Buenos Aires, (1995). [ Links ] [5] Delgado V., Estabilización del modelo poblacional de May a través de controles direccionales, Rev. Mat. Th. y Apl., Cimpa, UCR, Vol 8 # 2, pp. 79-83, (2001). [ Links ] [6] Lee E. B., Markus L., Foundations of Optimal Control Theory, Longman Scientific, Technical, (1988). [ Links ] Received : June 2004. Accepted : August 2005 *Supported by Dirección de Investigación U. Austral de Chile, Proyecto 200064. Instituto de Matemática |