Servicios Personalizados
Revista
Articulo
Indicadores
-
Citado por SciELO
-
Accesos
Links relacionados
-
Citado por Google
Similares en SciELO
-
Similares en Google
Compartir
Proyecciones (Antofagasta)
versión impresa ISSN 0716-0917
Proyecciones (Antofagasta) v.25 n.3 Antofagasta dic. 2006
http://dx.doi.org/10.4067/S0716-09172006000300005
Proyecciones
ON OPERATOR IDEALS DEFINED BY A REFLEXIVE ORLICZ SEQUENCE SPACE
J. LÓPEZ1, M. RIVERA2, G. LOAIZA3 1 UNIVERSIDAD POLITÉCNICA DE VALENCIA, ESPAÑA
Abstract Classical theory of tensornorms and operator ideals studies mainlythose defined by means of sequence spaces ..p. Considering Orlicz sequence spaces as natural generalization of ..p spaces, in a previous paper [12] an Orlicz sequence space was used to define a tensornorm, and characterize minimal and maximal operator ideals associated, by using local techniques. Now, in this paper we give a new characterization of the maximal operator ideal to continue our analysis of some coincidences among such operator ideals. Finally we prove some new metric properties of tensornorm mentioned above. Key words : Maximal operator ideals. Ultraproducts of spaces, Orlicz spaces. AMSMathematics Subject Classification : Primary 46M05, 46A32.
REFERENCES [1] Aliprantis, C. D., Burkinshaw, O.: Positive operators. Pure and Applied Mathematics 119. Academic Press, Newe York, (1985). [ Links ] [2] Diestel, J. and Uhl, J. J. Jr.: Vector measures. Mathematical Surveys and Monographs. Number 15. American Mathematical Society. U. S. A. (1977). [ Links ] [3] De Grande-De Kimpe, N.: L-mappings between locally convex spaces, Indag. Math. 33, pp. 261-274, (1971). [ Links ] [4] Defant, A. and Floret, K.: Tensor norms and operator ideals. North Holland Math. Studies. Amsterdam. (1993). [ Links ] [5] Dubinsky, E. and Ramanujan, M. S.: On M-nuclearity. Mem. Amer. Math. Soc. 128, (1972). [ Links ] [6] Harksen, J.: Tensornormtopologien. Dissertation, Kiel, (1979). [ Links ] [7] Haydon, R., Levy, M., Raynaud, Y.: Randomly normed spaces. Hermann, (1991). [ Links ] [8] Heinrich, S.: Ultraproducts in Banach spaces theory. J. reine angew. Math. 313, pp. 72-104, (1980). [ Links ] [9] Johnson, W. B.: On finite dimensional subspaces of Banach spaces with local unconditional structure. Studia Math. 51, pp. 225-240, (1974). [ Links ] [10] Komura, T., Komura, Y.: Sur les espaces parfaits de suites et leurs généralisations, J. Math. Soc. Japan, 15,3, pp. 319-338, (1963). [ Links ] [11] Lacey, H. E.: The isometric theory of Classical Banach spaces, Springer Verlag. Berlin, Heidelberg, New York, (1974). [ Links ] [12] Loaiza, G., López Molina, J.A., Rivera, M.J.: Characterization of the Maximal Ideal of Operators Associated to the Tensor Norm Defined by an Orlicz Function. Zeitschrift für Analysis und ihre Anwendungen (Journal for Analysis and its Applications) 20, no.2, pp. 281.293, (2001). [ Links ] [13] Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces I and II, Springer Verlang. Belin, Heidelberg, New York, (1977). [ Links ] [14] Lindenstrauss, J., Tzafriri, L.: The uniform approximation property in Orlicz spaces, Israel J. Math. 23, 2, pp. 142-155,(1976). [ Links ] [15] Pelczy´nski, A., Rosenthal, H. P.: Localization techniques in Lp spaces, Studia Math. 52, pp. 263-289, (1975). [ Links ] [16] Pietsch, A.: Operator Ideals. North Holland Math. Library. Amsterdam, New York. (1980). [ Links ] [17] Rivera, M.J.: On the classes of Ll, Ll,g and quasi-LE spaces. Preprint [ Links ] [18] Saphar, P.: Produits tensoriels topologiques et classes d'applications lineáires. Studia Math. 38, pp. 71-100, (1972). [ Links ] [19] Sims, B.: "Ultra"-techniques in Banach space theory, Queen's Papers in Pure and Applied Mathematics, 60. Ontario, (1982). [ Links ] [20] Tomáek, S: Projectively generated topologies on tensor products, Comentations Math. Univ. Carolinae, 11, 4 (1970). [ Links ]
J. A. López Molina M. J. Rivera G. Loaiza
Received : March 2006. Accepted : September 2006 |