Servicios Personalizados
Revista
Articulo
Indicadores
-
Citado por SciELO
-
Accesos
Links relacionados
-
Citado por Google
-
Similares en SciELO
-
Similares en Google
Compartir
Proyecciones (Antofagasta)
versión impresa ISSN 0716-0917
Proyecciones (Antofagasta) v.26 n.1 Antofagasta mayo 2007
http://dx.doi.org/10.4067/S0716-09172007000100001
Proyecciones Journal of Mathematics
Vol. 26, No 1, pp. 1-25, May 2007.
Universidad Católica del Norte
Antofagasta - Chile
ON SOME INFINITESIMAL AUTOMORPHISMS OF RIEMANNIAN FOLIATION
MOHAMED ALÍ CHAOUCH1, NABILA TORKI - HAMZA2
1UNIVERSITÉ DU 7 NOVEMBRE A CARTHAGE, TUNISIE
2UNIVERSITÉ DU 7 NOVEMBRE A CARTHAGE, TUNISIE
Correspondencia a:
Abstract
In Riemannian foliation, a transverse affine vector field preserves the curvature and its covariant derivatives. In this paper we solve the converse problem. Actually, we show that an infinitesimal automorphism of a Riemannian foliation which preserves the curvature and its covariant derivatives induces a transverse almost homothetic vector field. If in addition the manifold is closed and the foliation is irreducible harmonic , then a such infinitesimal automorphism induces a transverse killing vector field.
Keywords : Riemannian foliation. Harmonic foliation. Irreducible foliation. Transverse vector field.
REFERENCES
[1] R. A. Blumenthal, Transversaly homogeneous foliations, Ann. Institut Fourier 29, pp. 143-158, (1979). [ Links ]
[2] R. A. Blumenthal, Foliated manifolds with flat basic connection, J. Diff.Geom. 16, pp. 401-406, (1981). [ Links ]
[3] R. A. Blumenthal- J. J. Hebda, De Rham decomposition theorems for foliated manifolds, Ann. Inst Fourier. Grenoble. 33. 2, pp. 183-198, (1983). [ Links ]
[4] Y. Carriére, Flots Riemanniens, Astérisque 116, pp. 31-52, (1984). [ Links ]
[5] L. Conlon, Transversally parallelisable foliation of codimension two, Trans. Amer. Math. Soc. 194, pp. 79-102, (1974). [ Links ]
[6] C. Godbillon, Feuilletages, etudes géométrique, Birkaüser Verlag, (1991). [ Links ]
[7] K. Kobayashi - K. Nomizu, Fondations of differential geometry, Vol I .Interscience tracts in pure and applaied mathmatics. 15 Interscience New-York, (1963). [ Links ]
[8] F. W. Kamber - Ph. Tondeur, Harmonic foliations, Lecture Notes in Math. 949, Springer -Verlag Berlin-Heidelberg-New York, pp 87-121, (1982). [ Links ]
[9] F. W. Kamber- Ph. Tondeur, Infenitesimal automorphisms and second variation of the energy for harmonic foliations, Tóhoku. Math. J. 34, pp. 525-538, (1982). On some infinitesimal automorphisms of Riemannian Foliations 25 [ Links ]
[10] K. Nomizu- K. Yano, On infinitesimal transformations preserving the curvature tensor field and its covariant differentials, Ann. Ins. Four. 14-2 (1964). [ Links ]
[11] Ph. Tondeur, Geometry of foliations, Birkaüser Verlag, (1997). [ Links ]
Mohamed Ali Chaouch
Faculté des Sciences de Bizerte
Université du 7 Novembre A Carthage 7021-Zarzouna.
Bizerte -Tunisie.
e-mail : MohamedAli.Chaouch@fsb.rnu.tn
Nabila Torki-Hamza
Faculté des Sciences de Bizerte
Université du 7 Novembre A Carthage 7021-Zarzouna.
Bizerte -Tunisie.
e-mail : Nabila.Torki-Hamza@fsb.rnu.tn