Servicios Personalizados
Revista
Articulo
Indicadores
-
Citado por SciELO
-
Accesos
Links relacionados
-
Citado por Google
Similares en SciELO
-
Similares en Google
Compartir
Proyecciones (Antofagasta)
versión impresa ISSN 0716-0917
Proyecciones (Antofagasta) v.26 n.1 Antofagasta mayo 2007
http://dx.doi.org/10.4067/S0716-09172007000100003
Proyecciones Journal of Mathematics
Vol. 26, No 1, pp. 37-71, May 2007.
Universidad Católica del Norte
Antofagasta - Chile
ABOUT DECAY OF SOLUTION OF THE WAVE EQUATION WITH DISSIPATION *
LUIS CORTES1, YOLANDA SANTIAGO2
1UNIVERSIDAD DE ANTOFAGASTA, CHILE
2UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS, PERÚ
Correspondencia a:
Abstract
In this work, we consider the problem of existence of global solutions for a scalar wave equation with dissipation. We also study the asymptotic behaviour in time of the solutions. The method used here is based in nonlinear techniques.
Keywords: wave equation, evolution model, decay of solution, asymptotic behaviour.* Support: see
Acknowledgements
Y.S.S.A was partially suppoted by C.S.I. Estudio No 06140104, Universidad Nacional Mayor de San Marcos (UNMSM-Lima, Perú). The professor L.C.V was partially supported by the Chile Science Foundation Conicyt-Fondecyt Grant 1040067. Also, he was partially supported by a Internal project of the Universidad de Antofagasta (UA- Antofa-gasta, Chile), DIRINV Grant 1319-06 and a Grant of CNPq, PROSUL, (Brasil) "Programa Sul-Americano de Apoio as Atividades de Cooperaqao em Ciencia e Tecnología", respectively.
REFERENCES
[1] F. Conrad and B. Rao - Decay of solutions of wave equations in a star-shaped domain with nonlinear boundary feedback. Asympt. Anal. 7, pp. 159-177, (1993). [ Links ]
[2] L. Cortés-Vega.- A note on resonant frequencies for a system, of elastic wave equations, Int. J. Math. Math. Sci. 64, pp. 3485-3498, (2004). [ Links ]
[3] L. Cortés-Vega and Y. Santiago-Ayala, Decaimiento de la ecuación de onda con disipación. PESQUIMAT Revista de la Fac. CC. MM. de la UNMSM. Vol TX, Nro. 1, pp. 39-62, (2006). [ Links ]
[4] L. Hórmander - Linear Partial Differential Operators, Springer-Verlag, New York, 116, (1976). [ Links ]
[5] M. Ikawa - Mixed problems for hyperbolic equations of second order. J. Math. Soc. Japan 20, pp. 580-608, (1968). [ Links ]
[6] S. Kesavan - Topics in Functional Analysis and applications. John Wiley & Sons, (1989). [ Links ]
[7] J. Lagnese, Deacay of solutions of wave equations in a bounded region with boundary dissipation, J. Differential Equations 50, pp. 163-182, (1983). [ Links ]
[8] J. Lagnese and J. L. Lions, Modelling Analysis and Control of thin Plates, Masson, Paris, (1989). [ Links ]
[9] I. Lasiecka and R. Triggiani, Control Problems for Systems Described by Partial Differential Equations and Applications, Springer Verlag Lect. Not., 97 (1987). [ Links ]
[10] I. Lasiecka and G. Avalos, Uniform decay rates of solutions to a structural acoustic model with nonlinear dissipation, Appl. Math Comp. Sci, 8, No. 2, pp. 101-127, (1998). [ Links ]
[11] I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilin-ear wave equations with nonlinear boundary damping, Diff. Int. Eq, 6, pp. 507-533, (1993). [ Links ]
[12] I. Lasiecka, Stabilization of wave and plate-like equations with nonlinear dissipation on the boundary, J. Diffetential Equations, 79, pp. 340-381, (1989). [ Links ]
[13] V. Koniornik- Exact controllability and stabilization. John Wiley & Sons, (1994). [ Links ]
[14] V. Koniornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation, J. Math. Pures Appl. 69, pp. 163-182, (1990). [ Links ]
[15] P. Martinez. - Decay of solutions of the wave equation with a local highly degenerate dissipation. Asymptotic Analysis 19, pp. 1-17, (1999). [ Links ]
[16] M. Nakao - Decay of solutions of the wave equation with a local degenerate dissipation. Israel J. of Maths 95, pp. 25-42, (1996). [ Links ]
[17] A. Pazy - Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York, (1983). [ Links ]
[18] Y. Santiago A. - Una aplicación del Lema de Nakao. PESQUIMAT Revista de la Fac. CC. MM. de la UNMSM, Nro. 2, pp. 23-36, (2006). [ Links ]
[19] Y. Santiago A. - Decaimiento exponencial de la solución débil de una ecuación de onda no lineal. PESQUIMAT Revista de la Fac. CC. MM. de la UNMSM. Vol VIII Nro. 2, pp. 29-43, (2005). [ Links ]
[20] Y. Santiago A. and J. Rivera - Global existence and exponential decay to the wave equation with localized frictional damping. PESQUIMAT Revista de la Fac. CC. MM. de la UNMSM. Vol V. Nro. 2, pp. 1-19, (2002). [ Links ]
[21] D. Tataru, Boundary controllability for conservative PDEs, Appl. Math. Optim. 3, pp. 257-295, (1995). [ Links ]
[22] E. Zuazua - Exponential decay for the semi-linear wave equation with locally distributed damping. Comm. Partial Differential Equations. 15, pp. 205-235, (1990). [ Links ]
Luis A. Cortés-Vega
Departamento de matemáticas
Universidad de Antofagasta
Facultad de Ciencias Básicas
Casilla 170 Chile
email : lcortes@uantof.cl
Yolanda S. Santiago-Ayala
Facultad de Ciencias Matemáticas
Universidad Nacional Mayor de San Marcos
Ciudad Universitaria
Avenida Venezuela, cdra. 34 Lima 1 Perú
e-mail : ysantiagoa@unmsm.edu.pe