SciELO - Scientific Electronic Library Online

 
vol.26 número2SUR LES ALGÈBRES NUCLEÁIRES II índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

Compartilhar


Proyecciones (Antofagasta)

versão impressa ISSN 0716-0917

Proyecciones (Antofagasta) v.26 n.2 Antofagasta ago. 2007

http://dx.doi.org/10.4067/S0716-09172007000200005 

Proyecciones Journal of Mathematics
Vol. 26, Nº 2, pp. 219-236, August 2007.
Universidad Católica del Norte
Antofagasta - Chile


A CONVERGENCE RESULT FOR ASYNCHRONOUS ALGORITHMS AND APPLICATIONS


ABDENASSER BENAHMED

UNIVERSITY MOHAMED I, MOROCCO


Correspondencia a:



Abstract
We give in this paper a convergence result concerning parallel asynchronous algorithm with bounded delays to solve a nonlinear fixed point problems. This result is applied to calculate the solution of a strongly monotone operator. Special cases of these operators are used to solve some problems related to convex analysis like minimization of functionals, calculus of saddle point and variational inequality problem.


Key words : Asynchronous algorithm, nonlinear problems, monotone operators, fixed point, optimization problem, variational inequality problem, convex analysis.

2000 Mathematics Subject Classification : Primary 68W10, 47H10;Secondary 47Hxx.

REFERENCES
[1]A. Addou, A. Benahmed, Parallel synchronous algorithm for nonlinear fixed point problems, Proyecciones (Antofagasta), Vol. 23, No. 3, pp. 241-252, (2004).         [ Links ]
[2]J. Bahi, Asynchronous iterative algorithms for nonexpansive linear systems, Parallel And Distributed Computing, vol. 60, no. 1, pp. 92-112, (2000).         [ Links ]
[3]G. M. Baudet, Asynchronous iterative methods for multiprocessors, J. ACM, 25, pp. 226-244, (1978).         [ Links ]
[4]D. P. Bertsekast, J. Tsitsiklis, Some aspects of parallel and distributed iterative algorihms-A survey, Automatica, vol. 27, no.1, pp. 3-21, (1991).         [ Links ]
[5]D. Chazan, W. L. Miranker, Chaotic relaxation, Linear Algebra Appl. 2, pp. 199-222, (1969).         [ Links ]
[6]M. N. El Tarazi, Somme convergence results for asynchronous algorithms, Numer. Math. 39, pp. 325-340, (1982).         [ Links ]
[7]D. H. Griffel, Applied Functional Analysis, Wiley (1981).         [ Links ]
[8]J. C. Miellou, Algorithmes de relaxation chaotiques `a retard, RAIRO (R1), pp. 55-82, (1975).         [ Links ]
[9]R. R. Phelps, Lectures on maximal monotone operators, arXiv: math. FA /9302209 v1, (1993).         [ Links ]
[10]R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, (1970).         [ Links ]
[11]R. T. Rockafellar, Monotone operators associated with saddle functions and minimax problems, in Nonlinear Functional Analysis, Vol. 18 part 1, Amer. Math. Soc., pp. 397-407, (1970).         [ Links ]
[12]R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc., 149, pp. 75-88, (1970).         [ Links ]
[13]R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., Vol. 14, No. 5, pp. 877-898, (1976)
        [ Links ]

A. BENAHMED
Department of Mathematics
Faculty of Sciences
University Mohamed I
P. O. Box 524
Morocco
e-mail : mailto:benahmed.univ.oujda@menara.ma

Received : August 2006. Accepted : March 2007


Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons