SciELO - Scientific Electronic Library Online

 
vol.32 número4Multiplication and Composition operators on ωp (f )On the generating matrices of the Ê-Fibonacci numbers índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

Compartir


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.32 no.4 Antofagasta dic. 2013

http://dx.doi.org/10.4067/S0716-09172013000400003 

 

On Contra βθ-Continuous Functions

 

Miguel Caldas
Universidade Federal Fluminense, Brasil


ABSTRACT

In this paper, we introduce and investigate the notion of contra βθ-continuous functions by utilizing β-θ-closed sets. We obtain fundamental properties of contra βθ-continuous functions and discuss the relationships between contra βθ-continuity and other related functions.

2000 Mathematics Subject Classification : Primary 54C08, 54C10; Secondary: 54C05.

Keywords : β-θ-closed, βθ-continuous, contra βθ-continuous.


 

REFERENCES

1 M.E. Abd. El-Monsef, S.N.EL-Deeb and R.A.Mahmoud, β-open and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12, pp. 77-90, (1983).

2 D. Andrijevic, Semi-preopen sets,Mat.Vesnik, 38, pp. 24-32, (1986).         [ Links ]

3 M. Caldas and S. Jafari, Some properties of Contra-β-continuous functions, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 22, pp. 19-28, (2001).

4 M. Caldas, On θ-β-generalized closed sets and θ-β-generalized continuity in topolological spaces, J. Adv. Math. Studies, 4, pp. 13-24, (2011).

5 M. Caldas, Weakly sp-θ-closed functions and semipre-Hausdorff spaces, Creative Math. Inform., 20(2), pp. 112-123, (2011).

6 M. Caldas, Functions with strongly β-θ-closed graphs,J.Adv.Studies Topology, 3, pp. 1-6, (2012).

7 M. Caldas, On characterizations of weak θ-β-openness, Antartica J.Math., 9(3), pp. 195-203, (2012).

8 M. Caldas, Other characterizations of β-θ-Ro topological spaces. (To appear).

9 J. Dontchev,Contra-continuous functions and strongly s-closed spaces, Internat. J. Math. & Math. Sci., 19, pp. 303-310, (1996).         [ Links ]

10 J. Dontchev and T. Noiri, Contra-semicontinuous functions,Math. Pannonica 10, pp. 159-168, (1999).         [ Links ]

11 E. Ekici and T. Noiri, Contra δ-precontinuous functions (submitted).         [ Links ]

12 S. Jafari and T. Noiri, Contra-α-continuous functions between topological spaces, Iran.Int.J.Sci.2, pp. 153-167, (2001).

13 S. Jafari and T. Noiri, On contra precontinuous functions, Bull.Malaysian Math. Sci. Soc., 25, pp.115-128, (2002).         [ Links ]

14 S. Jafari and T. Noiri, Contra-super-continuous functions, Ann. Univ.Sci. Budapest. Eotvos Sect. Math. 42, pp. 27-34, (1999).         [ Links ]

15 M. Mrsevic, On pairwise R0 and pairwiseR1 bitopological spaces, Bull.Math.Soc.Sci.MathRSRoumano, (N.S.)30 (78), pp. 141-148, (1986).         [ Links ]

16 R. A. Mahmoud and M. E. Abd El-Monsef, β-irresolute and β-topological invariant, Proc. Pakistan. Acad. Sci., 27, 285-296, (1990).

17 T. Noiri, Weak and strong forms of β-irresolute functions, Acta Math.Hungar., 99, pp. 315-328, (2003).

18 T. Soundararajan, Weakly Hausdorff spaces and the cardinality of topological spaces, 1971 General Topology and its Relation to Modern Analysis and Algebra. III, (Proc. Conf. Kanpur, 1968), Academia,Prague, pp. 301-306, (1971).         [ Links ]

19 R. Staum, The algebra of bounded continuous functions into a nonar-chimedean field, Pacific J.Math., 50 (1974), 169-85.         [ Links ]

 

M. Caldas
Departamento de Matematica Aplicada,
Universidade Federal Fluminense,
Rua Mario Santos Braga,
s/n24020-140,
Niteroi,
RJ Brasil
e-mail: gmamccs@vm.uff.br

Received : October 2012. Accepted : October 2013.

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons