SciELO - Scientific Electronic Library Online

 
vol.33 número4The upper open monophonic number of a graphFróchet differentiation between Menger probabilistic normed spaces índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.33 no.4 Antofagasta dic. 2014

http://dx.doi.org/10.4067/S0716-09172014000400004 

On linear maps that preserve G-partial-isometries in Hilbert space

Abdellatif Chahbi

Samir Kabbaj

University of Ibn Tofail

Morocco


ABSTRACT

Let Ti be a complex Hilbert space and B(TT) the algebra of all bounded linear operators on H. We give the concrete forms of surjec-tive continue unital linear maps from B(TT) onto itself that preserves G-partial-isometric operators.

Key words and phrases : Linear preserver, Jordan homo-morphisms, Operators on spaces with an indefinite metric, partial-isometric operators.

2010 Mathematics Subject Classifications : Primary 15A86; 15A04; 47B50 Secondary 47L30; 16W20.


REFERENCES

[1] T. Ya. Azizov, I. S. Iokhvidov: Linear Operators in Spaces with an Indefinite Metric. John Wiley & Sons, Chichester, New York, (1989).         [ Links ]

[2] J. Bognar, Indefinite Inner Product Spaces. Springer, Berlin, (1974).         [ Links ]

[3] M. Bresar and C. R. Miers, Commutativity preserving mappings of von Neumann algebras, Canad. J. Math. 45, pp. 695-708, (1993).         [ Links ]

[4] M. Bresar and P. Semrl, Mappings which preserve idempotents, local automorphisms, and local derivations, Canad. J. Math. 45, pp. 483496, (1993).         [ Links ]

[5] M. BreSsar and P. Semrl, Linear maps preserving the spectral radius, J. Funct. Anal. 142, pp. 360-368, (1996).

[6] M.Bresar and P.Semrl, Linear preservers on B(X), Banach Cent. Publ.38, pp. 49-58, (1997).         [ Links ]

[7] A. Chahbi & S.Kabbaj, Linear maps preserving G-unitary Operators in Hilbert space, Arab Journal of Mathematical ciences, (2014). (in press)

[8] M.A.Dritschel & J. Rovnyak,Operators on indefinite inner product spaces, Lectures on operator theory and its applications 3, pp. 141-232, (1996).         [ Links ]

[9] G. Frobenius, Uber die Darstellung der endlichen Gruppen durch lineare Substitutionen, Sitzungsber. Deutsch. Akad. Wiss. Berlin, pp.994-1015, (1897).         [ Links ]

[10] I. N. Herstein, Topics in ring theory, University of Chicago Press, Chicago, (1969).         [ Links ]

[11] C.-K. Li and N. K. Tsing, Linear preserver problems: A brief introduction and some special techniques, Linear algebra and its applications 162, pp. 217-235, (1992).         [ Links ]

[12] M. Marcus, Linear operations on matrices, Amer. Math. Monthly 69, pp. 837-847, (1962).

[13] M. Mbekhta, Linear maps preserving the generalized spectrum, Extracta Mathematicae 22, pp. 45-54, (2007).         [ Links ]

[14] M. OmladiScandP.SSemrl, Linear mappings that preserve potent operators, Proc. Amer. Math. Soc. 123, pp. 1069-1074, (1995).

[15] S.Pierce, M.H.Lim, R.Loewy, C.K.Li, N.K.Tsing, B.McDon-ald, & L.Beasley, A survey of linear preserver problems, Linear and Multilinear Algebra 33, pp. 1-129, (1992).

[16] M. Rais, The unitary group preserving maps (the infinite-dimensional case), Linear and Multilinear Alg. 20, 4, pp. 337-345, (1987).         [ Links ]

[17] B. Russo and H. A. Dye, A note on unitary operators in C*-algebras, Duke Math. J. 33, pp. 413-416, (1966).         [ Links ]

[18] P. Semrl, Two characterizations of automorphisms on B(X), Studia Math. 105, pp. 143-149, (1993).         [ Links ]

[19] W.Watkins, Linear maps that preserve commuting pairs of matrices, Linear Algebra Appl. 14, pp. 29-35, (1976).         [ Links ]

[20] D.X. Xia, S.Z. Yan, Spectrum Theory of Linear operators II: Operator Theory on Indefinite Inner Product Spaces, Science Press, Beijing, (1987).         [ Links ]

 

Abdellatif Chahbi

Department of Mathematics, Faculty of Sciences, University of Ibn Tofail, Kenitra, Morocco

e-mail : ab1980@Zive./r

Samir Kabbaj

Department of Mathematics, Faculty of Sciences, University of Ibn Tofail, Kenitra, Morocco

e-mail : samkabbaj@yahoo.fr

Received : Abril 2014. Accepted : July 2014

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons