SciELO - Scientific Electronic Library Online

 
vol.33 número4Difference sequence spaces in cone metric spaceTopological indices of Kragujevac trees índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.33 no.4 Antofagasta dic. 2014

http://dx.doi.org/10.4067/S0716-09172014000400007 

Subseries convergence in abstract duality pairs

Min-Hyung Cho

Kum-Oh National Institute of Tech.

Korea

Li Ronglu

Harbin Institute of Tech.

P. R. C.

Charles Swartz

New Mexico State University

U.S.A.


ABSTRACT

Let E, F be sets, G an Abelian topological group and b : ExF — G. Then (E, F, G) is called an abstract triple. Let w(F, E) be the weakest toplogy on F such that the maps {b(x, ·): x G E} from F into G are continuous. A subset B C F is w(F,E) sequentially conditionally compact if every sequence {yk} C B has a subsequence {ynk } such that limj; b(x, ynk) exists for every x G E. It is shown that if a formal series in E is subseries convergent in the sense that for every subsequence {xnj} there is an element x G E such that Xj=! b(xnj ,y) = b(x,y) for every y G F ,then the series Xj=! b(xnj ,y) converge uniformly for y belonging to w(F, E) sequentially conditionally compact subsets ofF. This result is used to establish Orlicz-Pettis Theorems in locall convex and function spaces. Applications are also given to Uniform Boundedness Principles and continuity results for bilinear mappings.


REFERENCES

[AB] P. Antosik, Z. Bu, R. Li, E. Pap and C. Swartz, K -convergent sequences in locally convex spaces, Generalized Functions and Convergence, World Scientific, Singapore, pp. 299-304, (1990).         [ Links ]

[AS1] P. Antosik and C. Swartz, Matrix Methods in Analysis, Singer-Verlag, Heidelberg, (1985).         [ Links ]

[AS2] P. Antosik and C. Swartz, The Schur and Phillips Lemmas for Topological Groups, J. Math. Anal Appl., 98, pp. 179-187, (1984).

[B] B. Basit, On a Theorem of Gelfand and a new proof of the Orlicz-Pettis Theorem, Rend. Inst. Matem. Univ. di Trieste, 18 (1986), pp. 159-162, (1986).         [ Links ]

[BK] G. Bennett and N. Kalton, FK-spaces containing co, Duke Math. J., 39, pp. 561-582, (1972).

[C] C. Constantinescu, On Nikodyms Boundedness Theorem, Libertas Math., 1, pp. 51-73, (1981).         [ Links ]

[BCS] O. Blasco, J. M. Calabuig and T. Signes, A bilinear version of Orlicz-Pettis Theorem, J. Math. Anal. Appl., 348, pp. 150-164, (2008).         [ Links ]

[CL] A. Chen and R. Li, A version of Orlicz-Pettis Theorem for quasi-homogeneous operator space, J. Math. Anal. Appl., 373, pp. 127-133, (2011).         [ Links ]

[Diel] P. Dierolf, Theorems of Orlicz-Pettis type for locally convex spaces, Man. Math., 20, pp. 73-94, (1977).         [ Links ]

[DF] J. Diestel and B. Faires, On Vector Measures, Trans. Amer. Math. Soc., 198, pp. 253-271, (1974).

[DU] J. Diestel and J. Uhl, Vector Measures, Amer. Math. Soc. Surveys #15, Providence, (1977).         [ Links ]

[Di] N. Dinculeanu, Weak Compactness and Uniform Convergence of Operators in Spaces of Bochner Integrable Function, J. Math. Anal. Appl., 109 (1985).         [ Links ]

[Dr] L. Drewnowski, Equivalence of Brooks-Jewett, Vitali-Hahn-Saks and Nikodym Theorems, Bull. Aced. Polon. Sci., 20, pp. 725-731, (1972).         [ Links ]

[DS] N. Dunford and J. Schwartz, Linear Operators, Interscience, N.Y., (1958).         [ Links ]

[G] H. Garnir, M. DeWilde and J. Schmets, Analyse Fontionnelle I, Birkhauser, Basel, (1968).         [ Links ]

[FL] W. Filter and I. Labuda, Essays on the Orlicz Theeorem I, Real Anal. Exch., 16, pp. 393-403, (1990-1991).         [ Links ]

[K2] N. Kalton, Subseries Convergence in Topological Groups and Vector Spaces, Israel J. Math., 10, pp. 402-412, (1971).         [ Links ]

[K3] N. Kalton, Spaces of Compact Operators, Math. Ann., 208, pp. 267278, (1974).

[Kh] S. M. Khaleelulla, Counter Examples in Topological Vector Spaces, Springer Lecture Notes in Mathematics 936, Heidelberg, (1982).         [ Links ]

[LC] R.Li and M. Cho, A General Kalton-type Theorem, J. Harbin Inst. Tech 25, pp. 100-104, (1992).         [ Links ]

[LS1] R. Li and C. Swartz, Spaces for which the Uniform Boundedness Principle Holds, Studia Sci. Math. Hungar., 27, pp. 379-384, (1992).         [ Links ]

[LS2] R. Li and C. Swartz, A Nonlinear Schur Theorem, Acta Sci. Math. (Szged), 58, pp. 497-508, (1993).         [ Links ]

[LS3] R. Li and C. Swartz, An Abstract Orlicz-Pettis Theorem and Applications, Proy. J. Math., 27, pp. 155-169, (2008).         [ Links ]

[LT] J. Lindenstrauss and L. Tzarfriri, Classical Banach Spaces I, Springer-Verlag, Berlin, (1977).

[LW] R. Li and J. Wang, Invariants in Abstract Mappping Pairs, J. Aust. Math. Soc., 76, pp. 369-381, (2004).         [ Links ]

[MO] S. Mazur and W. Orlicz, Uber Folgen linearen Operationen, Studia Math., 4, pp. 152-157, (1933).         [ Links ]

[O] W. Orlicz, Beitrage zur Theorie der Orthogonalent Wichlungen II, Studia Math., 1, pp. 241-255, (1929).

[P] B. Pettis, On Integration in Vector Spaces, Trans. Amer. Math. Soc., 49, pp. 277-304, (1938).

[Pi] A. Pietsch, Nukleare Lokalconvexe Raume, Akademie Verlag, Berlin, (1965).         [ Links ]

[MO] A. Mohsen, Weak*-Norm Sequentially Continuous Operators, Math. Slovaca, 50, pp. 357-363, (2000).         [ Links ]

[R] A. Robertson, On unconditional convergence in topological vector spaces, Proc. Roy. Soc. Edinburgh, 68, pp. 145-157, (1969).

[Rol] S. Rolewicz, Metric Linear Spaces, Polish Sci. Publishers, Warsaw, (1984).

[St] W. Stiles, On subseries convergence in F-spaces, Israel J. Math., 8, pp. 53-56, (1970).         [ Links ]

[Sw1] C. Swartz, An Introduction to Functional Analysis, Dekker, N.Y., (1992).         [ Links ]

[Sw2] C. Swartz. A Generalized Orlicz-Pettis Theorem and Applications, Math. Z., 163, pp. 283-290, (1978).

[Sw3] C. Swartz, An Abstract Orlicz-Pettis Theorem, Bull. Pol. Acad. Sci. 32, pp. 433-437, (1984).         [ Links ]

[Sw4] C. Swartz, A Generalization of Stiles Orlicz-Pettis Theorem, Rend. Inst. Matem Univ. di Trieste, 20, pp. 109-112, (1988).

[Sw5] C. Swartz, Infinite Matrices and the Gliding Hump, World Sci. Publ., Singapore, (1996).         [ Links ]

[Sw6] C. Swartz, Multiplier Convergent Series, World Sci. Publ., Singapore, (2009)        [ Links ]

[Sw7] C. Swartz. A Bilinear Orlicz-Pettis, Theorem, J. Math. Anal. Appl.,365, pp. 332-337, (2010).

[Th] G. Thomas, L'integration par rapport a une mesure de Radon vectorielle, Ann. Inst. Fourier, 20, pp. 55-191, (1970).         [ Links ]

[Tw] I. Tweddle, Unconditional Convergence and Vector-Valued Measures, J. London Math. Soc., 2, pp. 603-610, (1970).         [ Links ]

[We] H. Weber, Compactness in Spaces of Group-Valued Contents, the Vitali-Hahn-Saks Theorem and Nikodym Boundedness Theorem, Rocky. Mount. J. Math., 16, pp. 253-275, (1985).         [ Links ]

[Wi] A. Wilansky, Modern Methods in Topological Vector Spaces, Mc Graw-Hill, N. Y. (1978).         [ Links ]

[ZCL] F. Zheng, C. Cui, and R. Li, Abstract Gliding Hump Properties in the Vector-Valued Dual Pairs, Acta Anal. Functionalis Appl., 12, pp. 322-327, (2010).         [ Links ]

Min-Hyung Cho

Department of Mathematics

Kum-Oh National Institute of Technology

Kumi, Korea

e-mail : mignon@kumoh.ac.kr

Li Ronglu

Department of Mathematics

Harbin Institute of Technology

Harbin

P. R. C.

Charles Swartz

Department of Mathematics New Mexico State University

Las Cruces, NM, 88003, U. S. A.

e-mail : cswartz@nmsu.edu

Received : October 2014. Accepted : October 2014

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons