SciELO - Scientific Electronic Library Online

vol.34 número1The multi-step homotopy analysis method for solving the Jaulent-Miodek equationsState analysis of time-varying singular nonlinear systems using Legendre wavelets índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.34 no.1 Antofagasta mar. 2015 

Square Sum Labeling of Class of Planar Graphs

Reena Sebastian

S. E. S. College, India 

K. A. Germina

Central University of Kerala, India 


A (p, q) graph G is said to be square sum, if there exists a bijection f : V(G) → {0,1, 2,...,p — 1} such that the induced function f * : E(G)→ N defined by f * (uv) = (f (u))2 + (f (v))2, ∀ uv ∈ E(G) is injective. In this paper we proved that the planar graphs Plm,n,TBL(n,α,k,β) and higher order level joined planar grid admits square sum labeling. Also the square sum properties of several classes of graphs with many odd cycles are studied.

Key Words : Square sum graphs,Plm n,TBL(n,α,k,β).


[1]    B. D. Acharya, Personal Communication, September, (2011).         [ Links ]

[2]    Ajitha V, Studies in Graph Theory-Labeling of Graphs, Ph. D. Thesis, Kannur Univeristy, Kannur, (2007).         [ Links ]

[3]    D. M. Burton, Elementary number theory, Second Edition, Wm. C. Brown Company publishers, (1980).         [ Links ]

[4]    Beineke, L. W. and Hegde, S. M. Strongly Multiplicative graphs, Discuss. Math. Graph Theory, 21, pp. 63-75, (2001).         [ Links ]

[5]    J. A. Gallian, A dynamic survey of graph labrling, The Electronic Journal of Combinatorics (DS6), (2005).         [ Links ]

[6]    Germina K. A. and Reena Sebastian, On square sum Graphs, communicated.         [ Links ]

[7]    F. Harary, Graph Theory, Addison-Wesley Pub. Comp., Reading, Massachusetts, (1969).         [ Links ]

[8]    Ersazig and A. Rosa, Magic valuation of finite graphs, Canad. Math. Bull., 13, pp. 451-461, (1970).         [ Links ]

[9]    K. Ramanjaneyulu, V. Ch. Venkaiah and Kishore Kothapalli, Antimagic labeling of class of planar graphs, Australian Journal of Combinatorics, 41, pp. 283-290, (2008).         [ Links ]

[10]    J. Baskar Babujee,planar graphs with maximum edge antimagic property, The Mathematics Education, 37 (4), pp. 194-198, (2003).         [ Links ]

Reena Sebastian

Department of Mathematics,

S. E. S. College,




K. A. Germina

School of Mathematical and Physical Sciences, Central University of Kerala,




l:First author is indebted to the University Grants Commission(UGC) for granting her Teacher Fellowship under UGC’s Faculty Development Programme during XI plan. 

Received : November 2013. Accepted : February 2015

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons