SciELO - Scientific Electronic Library Online

 
vol.34 número2The largest Laplacian and adjacency indices of complete caterpillars of fixed diameter índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.34 no.2 Antofagasta jun. 2015

http://dx.doi.org/10.4067/S0716-09172015000200007 

Strongly(Vλ, A, Δn(vm),p, q)-summable sequence spaces defined by modulus function and statistical convergence

Mohammad Aiyub

University of Bahrain

Kingdom of Bahrain 


ABSTRACT

In this paper we introduce strongly (Vλ,A, Δnvm,p, q)-summable sequences and give the relation between the spaces of strongly (Vλ,A, Δnvm,p, q)-summable sequences and strongly (Vλ,A, Δnvm,p, q)-summable sequences with respect to a modulus function when A =(aik) is an infinite matrix of complex number, (Δnvm) is generalized difference operator, p = (pi) is a sequence of positive real numbers and q is a seminorm. Also we give the relationship between strongly (Vλ,A, Δnvm,p, q) - convergence with respect to a modulus function and strongly Sλ(A, Δn(vm))- statistical convergence.

AMS Subject Classification (2000) : 40A05, 46A45.

Keywords and Phrases : De la Vallee-Poussin mean, Difference operator, modulus function, statistical convergence.


REFERENCES

[1]    M. Aiyub, Strongly almost summable difference sequences and statistical convergence., Advances in Mathematics: Scientific Journal 2 (1), pp. 1-8, (2013).         [ Links ]

[2]    T. Bilgin, Some sequence spaces defined by modulus., Int. Math. J., 3(3), pp. 305-310, (2003).         [ Links ]

[3]    J. S. Connor, The statistical and strong p — Ceseio convergence of sequence., Analysis 8 (1998), pp. 47-63, (1998).         [ Links ]

[4]    H. Dutta, Characterization of certain matrix classes involving generalized difference summability spaces., Appl. Sci. Apps 11, pp. 60-67, (2009).         [ Links ]

[5]    M. Et and R. Colak, On generalized difference sequence spaces., Soo-chow J. Math 21 (4), pp. 147-169, (1985).         [ Links ]

[6]    H. Fast, Sur la convergence statistique., Colloq. Math. 2, pp. 241-244, (1951).         [ Links ]

[7]    A. R. Freedman and J. J. Sember, Density and summability., Pacific. J. Math., 95, pp. 293-305, (1981).         [ Links ]

[8]    M. Gungor, M. Et and Y. Altin, Strongly (va, A , q)-summable sequences defined by Orlicz functions., Appl.Math. Comput., 157, pp. 561-571, (2004).         [ Links ]

[9]    H. Kizmaz, On certain sequence spaces, Canad. Math. Bull. 24, pp. 169-176, (1981).         [ Links ]

[10]    E. Kolk, On strong boundedness and summability with respect to a sequence moduli., Tartu Ul Toimetised 960, (1983).         [ Links ]

[11]    L. Lindler, Uber de la Valle-pousinche Summierbarkeit Allgemeiner Orthogonalreihen., Acta Math. Acad. Sci. Hungar. 16, pp. 375-387, (1995).         [ Links ]

[12]    I. J. Maddox, Sequence spaces defined by a modulus., Mat. Proc. Camb. Phil. Soc. 100, pp. 161-166, (1986).         [ Links ]

[13]    I. J. Maddox,Inclusion between FK space and Kuttner’s theorem., Math. Proc. Cambridge. Philos. Soc. 101, pp. 523-527, (1987).

[14]    S. Mohiuddin and M. Aiyub, Lacunary statistical convergence in random2-normed spaces., Appl. Math. Inf. Sci. 6(3), pp. 581-585, (2012).         [ Links ]

[15]    H. Nakano, Concave modulars, J. Math. Soc. Japan, 5, pp. 29-49, (1953).         [ Links ]

[16]    E.Ozturk and T. Bilgin, Strongly summable sequence spaces defined by a modulus., Indian J. Pure and App. Math. 25, pp. 621-625, (1994).         [ Links ]

[17]    W. H. Ruckle, FK spaces in which the sequence of coordinate vector is bounded., Canad. J. Math. 25, pp. 973-978, (1973).         [ Links ]

[18]    D.Rath and B.C. Tripathy,Matrix maps on sequence spaces associated with sets of intergers., Indian journal of pure Apll. Math. 27 (2), pp. 197-206, (1996).         [ Links ]

[19]    T.Salat, On Statistically convergent sequence of real numbers., Math. Slovaca 30, pp. 139-150, (1980).         [ Links ]

[20]    E. Savas, Some sequence spaces and statistical convergence., Int.J. Math. and Math. Sci., 29 (5), pp. 303-306, (2002).         [ Links ]

[21]    I. J. Schoenberg, The integrability of certain functions and related summability methods., Amer. Math. Monthly, 66, pp. 261-375, (1959).         [ Links ]

[22]    B. C. Tripathy, Matrix transforations between some classes of sequences, Journal of Mathematical Analysis and appl. 206, pp. 448-450, (1997).         [ Links ]

[23]    B. C. Tripathy and A. Esi, A new type of difference sequence spaces., Int. J. Sci. Technol. 1 (1), pp. 11-14, (2006).         [ Links ]

[24]    B. C. Tripathy ,A. Esi and B. K. Tripathy,On a new type of generalized difference cesaro sequence spaces., Soochow J. Math 31 (3), pp. 333340, (2005).         [ Links ]

[25]    B. C. Tripathy and M. Sen, On generalized statitically convergent sequences, Indian journal of pure and App. Maths. 32 (11), pp. 16891694, (2001).         [ Links ]

[26] B. C. Tripathy and M. Sen, Characterization of some matrix classes involving paranormed sequence spaces, Tamkang Jour. Math, 37 (2), pp. 155-162, (2006).         [ Links ]

M. Aiyub

Department of Mathematics, University of Bahrain,

P. O. Box-32038,

Kingdom of Bahrain

e-mail: maiyub2002@yahoo.com

Received : January 2015. Accepted : April 2015

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons