SciELO - Scientific Electronic Library Online

 
vol.34 número3Holomorphically proyective Killing fields with vectorial fields associated in kahlerian manifoldsSkolem Difference Mean Graphs índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.34 no.3 Antofagasta set. 2015

http://dx.doi.org/10.4067/S0716-09172015000300003 

 

Stability in delay Volterra difference equations of neutral type

 

Ernest Yankson, Emmanuel K. Essel

University of Cape Coast, Ghana.


ABSTRACT

Sufficient conditions for the zero solution of a certain class of neutral Volterra difference equations with variable delays to be asymptotically stable are obtained. The Banach’s fixed point theorem is employed in proving our results.

2000 Mathematics Subject Classification: 3f9A30, 39A70.

Keywords : Banach’s Fixed point theorem, Volterra difference equation, asymptotic stability.


REFERENCES

[1]    A. Ardjouni, and A. Djoudi; Stability in nonlinear neutral Volterra difference equations with variable delays, Journal of Nonlinear Evolution Equations and Applications, No. 7, pp. 89-100, (2013).         [ Links ]

[2]    A. Ardjouni, and A. Djoudi; Stability in linear neutral difference equations with variable delays, Mathematica Bohemica, No. 3, pp. 245-258, (2013).         [ Links ]

[3]    S. Elaydi, Periodicity and stability of linear Volterra difference systems, Journal of Mathematical Analysis and Applications, 181, pp. 483-492, (1994).         [ Links ]

[4]    S. Elaydi, An Introduction to Difference Equations, Springer, New York, (1999).         [ Links ]

[5]    M. Islam and E. Yankson, Boundedness and stability in nonlinear delay difference equations employing fixed point theory, Electronic Journal of Qualitative Theory of Differential Equations, No. 26, pp. 1-18, (2005).         [ Links ]

[6]    W. G. Kelly and A. C. Peterson, Difference Equations : An Introduction with Applications, Academic Press, (2001).         [ Links ]

[7]    Y. N. Raffoul, Stability and periodicity in discrete delay equations, Journal of Mathematical Analysis and Applications, 324, No. 2, pp. 1356-1362, (2006).         [ Links ]

[8] Y. N. Raffoul, Periodicity in general delay nonlinear difference equations using fixed point theory, Journal of Difference Equations and Applications, 10, No. 1315, pp. 1229-1242, (2004).         [ Links ]

[9]    Y. N. Raffoul, General theorems for stability and boundedness for nonlinear functional discrete systems, Journal of Mathematical Analysis and Applications, 279, pp. 639-650, (2003).         [ Links ]

[10]    D. R. Smart, Fixed point theorems ; Cambridge Tracts in Mathematics, No. 66. Cambridge University Press, London-New York, (1974).         [ Links ]

[11]    E. Yankson, Stability in discrete equations with variable delays, Electronic Journal of Qualitative Theory of Differential Equations, No. 8, pp. 1-7, (2009).         [ Links ]

[12]    E. Yankson, Stability of Volterra difference delay equations, Electronic Journal of Qualitative Theory of Differential Equations, No. 20, pp. 1-14, (2006).         [ Links ]

Ernest Yankson

Department of Mathematics and Statistics

University of Cape Coast

Ghana

e-mail : ernestoyank@gmail.com

Emmanuel K. Essel

Department of Mathematics and Statistics

University of Cape Coast

Ghana

e-mail : ekessel04@yahoo.co.uk

Received : March 2015. Accepted : June 2015

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons