SciELO - Scientific Electronic Library Online

 
vol.34 número3Stability in delay Volterra difference equations of neutral typeAsymptotic stability in totally nonlinear neutral difference equations índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.34 no.3 Antofagasta set. 2015

http://dx.doi.org/10.4067/S0716-09172015000300004 

 

Skolem Difference Mean Graphs

 

M. Selvi D. Ramya

Dr. Sivanthi Aditanar College of Engineering

P. Jeyanthi

Govindammal Aditanar College for Women, India.


ABSTRACT

A graph G = (V, E) with p vertices and q edges is said to have skolem difference mean labeling if it is possible to label the vertices x ∈ V with distinct elements f (x) from 1, 2, 3,. . . ,p + q in such a way that for each edge and the resulting labels of the edges are distinct and are from 1, 2, 3, . . . ,q. A graph that admits a skolem difference mean labeling is called a skolem difference mean graph. In this paper, we prove T ( K1,n1 : K1,n2: . . . : K1,nm›, T ‹ K1,n1 o K1,n2 o o o K1,nm), are skolem difference mean graphs.

 

Keywords : Mean labeling, skolem difference mean labeling, skolem difference mean graph, extra skolem difference mean labeling.

AMS Subject Classification : 05C78


REFERENCES

[1]    F. Harary, Graph theory, Addison Wesley, Massachusetts, (1972).         [ Links ]

[2]    Joseph A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, 17 (2014), # DS6.         [ Links ]

[3]    K. Murugan and A. Subramanian, Skolem difference mean labeling of H-graphs, International Journal of Mathematics and Soft Computing, Vol.1, No. 1, pp. 115-129, (2011).         [ Links ]

[4]    K. Murugan and A. Subramanian, Labeling of subdivided graphs, American Journal of Mathematics and Sciences, Vol.1, No. 1, pp. 143-149, (2012).         [ Links ]

[5]    K. Murugan and A. Subramanian, Labeling of finite union of paths, International Journal of Mathematics and Soft Computing, Vol.2, No. 1, pp. 99-108, (2012).         [ Links ]

[6]    D. Ramya, M. Selvi and R. Kalaiyarasi, On skolem difference mean labeling of graphs, International Journal of Mathematical Archive, 4(12), pp. 73-79, (2013).         [ Links ]

[7]    D. Ramya and M. Selvi, On skolem difference mean labeling of some trees, International Journal of Mathematics and Soft Computing, Vol.4, No. 2, pp. 11-18, (2014).         [ Links ]

[8]    S. Somasundaram and R. Ponraj, Mean labelings of graphs, National Academy Science Letter, 26, pp. 210-213, (2003).         [ Links ]

M. Selvi

Department of Mathematics

Dr. Sivanthi Aditanar College of Engineering,

Tiruchendur-628 215, Tamilnadu,

India

e-mail: selvm80@yahoo.in

D. Ramya

Department of Mathematics

Dr. Sivanthi Aditanar College of Engineering,

Tiruchendur-628 215, Tamilnadu,

India

e-mail : aymar_padma@yahoo.co.in

P. Jeyanthi

Research Centre, Department of Mathematics Govindammal Aditanar College for Women Tiruchendur-628 215, Tamilnadu,

India

e-mail : jeyajeyanthi@rediffmail.com

Received : April 2015. Accepted : June 2015

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons