SciELO - Scientific Electronic Library Online

 
vol.34 número3Ramanujan’s fifth order and tenth order mock theta functions - a generalization índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.34 no.3 Antofagasta set. 2015

http://dx.doi.org/10.4067/S0716-09172015000300007 

 

Functional equations of Cauchy’s and d’Alembert’s Type on Compact Groups

 

Abdellatif Chahbi, Brahim Fadli and Samir Kabbaj 

University of Ibn Tofail, Morroco.


ABSTRACT

Using the non-abelian Fourier transform, we find the central continuous solutions of the functional equation

where G is an arbitrary compact group,

and σ is a continuous automorphism of G, such that σn = I. We express the solutions in terms of the unitary (group) characters of G.

Subjclass [2010] : 39B52; 22C05; 43A30; 22E45.

Keywords : Non-abelian Fourier transform, representation of a compact group.


REFERENCES

[1]    M. Akkouchi, B. Bouikhalene, and E. Elqorachi,Functional equations and K-spherical functions. Georgian.Math.J, 15, pp. 1-20, (2008).         [ Links ]

[2]    J. An and D. Yang, Nonabelian harmonic analysis and functional equations on compact groups. J. Lie Theory, 21, pp. 427-455, (2011).         [ Links ]

[3]    R. Badora, On a joint generalization of Cauchy’s and d’Alembert’s functional equations, Aequationes Math. 43, pp. 72-89, (1992).

[4]    W. Chojnacki, Group representations of bounded cosine functions. J. Reine Angew. Math., 478, pp. 61-84, (1986).         [ Links ]

[5]    W. Chojnacki, On some functional equation generalizing Cauchy’s and d’Alembert’s functional equations. Colloq. Math., 55, pp. 169-178, (1988).

[6]    W. Chojnacki, On group decompositions of bounded cosine sequences. Studia Math., 181, pp. 61-85, (2007).         [ Links ]

[7]    W. Chojnacki, On uniformly bounded spherical functions in Hilbert space, Aequationes Math., 81, pp. 135-154, (2011).         [ Links ]

[8]    T.M.K. Davison, D’Alembert’s functional equation on topological groups. Aequationes Math., 76, pp. 33-53, (2008).

[9]    T.M.K. Davison, D’Alembert’s functional equation on topological monoids. Publ. Math. Debrecen, 75, pp. 41-66, (2009).

[10]    E. Elqorachi, M. Akkouchi, A. Bakali, B. Bouikhalene, Badora’s equation on non-Abelian locally compact groups. Georgian Math. J., 11, pp. 449-466, (2004).

[11]    P. de Place Friis, D’Alembert’s and Wilson’s equation on Lie groups. Aequationes Math., 67, pp. 12-25, (2004).

[12]    G. Folland, A Course in Abstract Harmonic Analysis, CRC Press, Boca Raton, FL, (1995).         [ Links ]

[13]    H. Shin’ya, Spherical matrix functions and Banach representability for lo- cally compact motion groups. Japan. J. Math. (N.S.), 28, pp. 163201, (2002).

[14]    H. Stetkffir, D’Alembert’s functional equations on metabelian groups, Aequationes Math., 59, pp. 306-320, (2000).

[15]    H. Stetkffir, D’Alembert’s and Wilson’s functional equations on step 2 nilpotent groups, Aequationes Math., 67, pp. 241-262, (2004).

[16]    H. Stetkffir, Properties of d’Alembert functions, Aequationes Math., 77, pp. 281-301, (2009).

[17] H. Stetkffir, Functional Equations on Groups. World Scientific Publishing Co. (2013).         [ Links ]

[18]    H. Stetkffir, D’Alembert’s functional equation on groups, Banach Center Publ. 99, pp. 173-191, (2013).

[19]    D. Yang, Factorization of cosine functions on compact connected groups, Math. Z., 254, pp. 655-674, (2006).         [ Links ]

[20]    D. Yang, Functional Equations and Fourier Analysis, Canad. Math. Bull. 56, pp. 218-224, (2013).         [ Links ]

Abdellatif Chahbi

Department of Mathematics, University of Ibn tofail,

Kenitra,

Morroco

e-mail : abdellatifchahbi@gmail.com

Brahim Fadli

Department of Mathematics, University of Ibn tofail,

Kenitra,

Morroco

e-mail : himfadli@gmail.com

Samir Kabbaj

Department of Mathematics, University of Ibn tofail,

Kenitra,

Morroco

e-mail : samkabbaj@yahoo.fr

Received : June 2015. Accepted : July 2015

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons