SciELO - Scientific Electronic Library Online

vol.34 número4Computing the maximal signless Laplacian index among graphs of prescribed order and diameterA New Closed Graph Theorem on Product Spaces índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.34 no.4 Antofagasta dic. 2015 

Proyecciones Journal of Mathematics Vol. 34, No 4, pp. 391-399, December 2015. Universidad Católica del Norte Antofagasta - Chile

The Banach-Steinhaus Theorem in Abstract Duality Pairs

Min-Hyung Cho

Kum-Oh National Institute of Technology


Li Ronglu

Harbin Institute of Technology

P. R. C.

Charles Swartz

New Mexico State University

U. S. A.


Let E, F be sets and G a Hausdorff, abelian topological group with b : E X F→ G; we refer to E, F, G as an abstract duality pair with respect to G or an abstract triple and denote this by (E,F : G). Let (Ei,Fi : G) be abstract triples for i = 1, 2. Let Fi be a family of subsets of    Fi    and let    τFi(Ei)    =    τibe    the    topology on    Ei   of uniform convergence on the members of Fi. Let J be a family of mappings from Ei to E2. We consider conditions which guarantee that J is τ12equicontinuous. We then apply the results to obtain versions of the Banach-Steinhaus Theorem for both abstract triples and for linear operators between locally convex spaces.


[CLS] M. Cho, R. Li and C. Swartz, Subseries convergence in abstract duality pairs, Proy. J. Math., 33, pp. 447-470, (2014).         [ Links ]

[DS] N. Dunford and J. Schwartz, Linear Operators, Interscience, N. Y., (1958).         [ Links ]

[K2] G. Köthe, Topological Vector Spaces II, Springer-Verlag, Berlin, (1979).         [ Links ]

[LC] R. Li and M. Cho, A Banach-Steinhaus Type Theorem Which is Valid for every Locally Convex Space, Applied Functional Anal., 1, pp. 146147, (1993).         [ Links ]

[Sw1] C. Swartz, An Introduction to Functional Analysis, Marcel Dekker, N. Y., (1992).         [ Links ]

[Sw2] C. Swartz, The Uniform Boundedness Principle for Arbitrary Locally Convex Spaces, Proy. J. Math., 26, pp. 245-251, (2007).         [ Links ]

[Sw3] C. Swartz, Multiplier Convergent Series, World Sci. Publishing, Singapore, (2009).         [ Links ]

[Sw4] C. Swartz, Infinite Matrices and the Gliding Hump, World Sci. Publishing, Singapore, (1996).         [ Links ]

[Wi1] A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill, N. Y., (1978).         [ Links ]

[Wi2] A. Wilansky, Summability through Functional Analysis, North Holland, Amsterdam, (1984).         [ Links ]

Min-Hyung Cho

Department of Applied Mathematics Kum-Oh National Institute of Technology Kumi,


e-mail :

Li Ronglu (he is deceased) Department of Mathematics Harbin Institute of Technology Harbin,

P. R. C.


Charles Swartz

Department of Mathematical Sciences New Mexico State University Las Cruces, NM, 88003,

U. S. A.

e-mail :

Received : October 2015. Accepted : November 2015

This paper was supported by Research Fund, Kumoh National Institute of Technology

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons