SciELO - Scientific Electronic Library Online

 
vol.35 número4Sum divisor cordial labeling for star and ladder related graphsAsymptotically Double Lacunary Statistically Equivalent Sequences of Interval Numbers índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.35 no.4 Antofagasta dic. 2016

http://dx.doi.org/10.4067/S0716-09172016000400007 

Stability of generalized Jensen functional equation on a set of measure zero

 

Hajira Dimou

Youssef Aribou 

Abdellatif Chahbi 

Samir Kabbaj 

University of Ibn Tofail

Morocco 


ABSTRACT

Let E is a complex vector space and F is real (or complex ) Banach space. In this paper, we prove the Hyers-Ulam stability for the generalized Jensen functional equation

.

Subjclass [2010] : Primary 39B82; Secondary 39B52.

Keywords : K- Jensenfunctional equation, Hyers-Ulam stability.


REFERENCES

[1]    T. Aoki, On the stability ofthe linear transformation in Banach spaces, Journal of the Mathematical Society of Japan, 2, pp. 64-66, (1950).         [ Links ]

[2]    J. A. Baker, A generalfunctional equation and its stability, Proceeding of the American Mathematical Society, 133, pp. 1657-1664, (2005).         [ Links ]

[3]    N. Brillouet-Belluot, J. Brzdek, K. Cieplinski, On some recent developments in Ulam’s type stability, Abstract and Applied Analysis, (2012).

[4]    J. Brzd§k, On a method ofproving the Hyers-Ulam stability offunc-tional equations on restricted domains, The Australian Journal of Mathematical Analysis and Applications, 6, pp. 1-10, (2009).         [ Links ]

[5]    A. B. Chahbi, A. Charifi, B. Bouikhalene and S. Kabbaj, Nonarchimedean stability of a Pexider K-quadratic functional equation, Arab Journal of Mathematical Sciences, 21, pp. 67-83, (2015).         [ Links ]

[6]    A. Chahbi, M. Almahalebi, A. Charifi and S.Kabbaj Generalized Jensen functional equation on restricted domain, Annals of West University of Timisoara-Mathematics, 52, pp. 29-39, (2014).         [ Links ]

[7]    P. W. Cholewa, Remarks on the stability offunctional equations, Ae-quationes mathematicae, 27, pp. 76-86, (1984).         [ Links ]

[8]    J. Chung , Stability of a conditional Cauchy equation on a set of measure zero, Aequationes mathematicae, 87, pp. 391-400, (2014).         [ Links ]

[9]    J. Chung and J. M. Rassias, Quadratic functional equations in a set of Lebesgue measure zero, Journal of Mathematical Analysis and Applications, 419, pp. 1065-1075, (2014).         [ Links ]

[10]    J. Chung and J. M. Rassias, On a measure zero Stability problem of a cyclic equation, Bulletin of the Australian Mathematical Society, 93,

pp. 1-11, (2016).

[11]    S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abhandlungen aus dem Mathematischen Seminar der Univer-sitat Hamburg, 62, pp. 59-64, (1992).         [ Links ]

[12]    P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, Journal of Mathematical Analysis and Applications, 184, pp. 431-436, (1994).         [ Links ]

[13]    D. H. Hyers, On the stability ofthe linearfunctional equation, Proceedings of the National Academy of Sciences, 27, pp. 222-224, (1941).         [ Links ]

[14]    D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Ae-quationes Mathematicae, 44, pp. 125-153, (1992).         [ Links ]

[15]    D. H. Hyers, Transformations with bounded n-th differences, Pacific JournalofMathematics, 11, pp. 591-602, (1961).         [ Links ]

[16]    K. W. Jun and Y. H. Lee, A generalization ofthe Hyers-Ulam-Rassias stability of Jensen's equation, Journal of Mathematical Analysis and Applications, 238, pp. 305-315, (1999).         [ Links ]

[17]    S. M. Jung, On the HyersUlam stability of the functional equations that have the quadratic property, Journal of Mathematical Analysis and Applications, 222, pp. 126-137, (1998).         [ Links ]

[18]    C. F. K. Jung, On generalized complete metric spaces, Bulletin of the American Mathematical Society, 75, pp. 113-116, (1969).         [ Links ]

[19]    R. Lukasik, Some generalization of Cauch^s and the quadratic functional equations, Aequationes Mathematicae, 83, pp. 75-86, (2012).         [ Links ]

[20]    A. Najati, S. M. Jung, Approximately quadratic mappings on restricted domains, Journal ofInequalities and Applications, (2010).         [ Links ]

[21]    J. C. Oxtoby, Measure and Category, Springer, New-York (1980).         [ Links ]

[22]    Th. M. Rassias, On the stability of linear mapping in Banach spaces, Proceedings of the American Mathematical Society, 72, pp. 297-300, (1978).         [ Links ]

[23]    Th. M. Rassias, On the stability of the functional equations and a problem of Ulam, Acta Applicandae Mathematicae, 62, pp. 23-130, (2000).         [ Links ]

[24]    Th. M. Rassias and P. Semrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proceedings of the American Mathematical Society, 114, pp. 989-993, (1992).         [ Links ]

[25]    Th. M. Rassias, and J. Tabor, Stability ofMappings ofHyers-Ulam Type, Hardronic Press, (1994).         [ Links ]

[26]    J. M. Rassias, On the Ulam stability of mixed type mappings on restricted domains, Journal of Mathematical Analysis and Applications, 276, pp. 747-762, (2002).         [ Links ]

[27]    F. Skof, Local properties and approximations of operators, Rendiconti del Seminario Matematico e Fisico di Milano, 53, pp. 113-129, (1983).         [ Links ]

[28]    H. Stetkmr, Functional equations involving means offunctions on the complex plane, Aequationes Mathematicae, 56, pp. 47-62, (1998).         [ Links ]

[29]    S. M. Ulam, A Collection ofMathematical Problems, Interscience Pub-lishers, 8(1960).         [ Links ]

Hajira Dimou

Department of Mathematics, Faculty of Sciences,

IBN Tofail University,

BP: 14000, Kenitra,

Morocco

e-mail : dimouhajira@gmail.com

Youssef Aribou

Department of Mathematics, Faculty of Sciences,

IBN Tofail University,

BP: 14000, Kenitra,

Morocco

e-mail : aribouyoussef3@gmail.com

Abdellatif Chahbi

Department of Mathematics, Faculty of Sciences,

IBN Tofail University,

BP: 14000, Kenitra,

Morocco

e-mail : ab-1980@live.fr

Samir Kabbaj

Department of Mathematics, Faculty of Sciences,

IBN Tofail University,

BP: 14000, Kenitra,

Morocco

e-mail : samkabbaj@yahoo.fr

Received : June 2016. Accepted : August 2016

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons