SciELO - Scientific Electronic Library Online

 
vol.37 número4Odd Vertex equitable even labeling of cyclic snake related graphsFuzzy soft attribute correlation coefficient and application to data of human trafficking índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.37 no.4 Antofagasta dic. 2018

http://dx.doi.org/10.4067/S0716-09172018000400627 

Articles

Fekete-Szego problem for certain analytic functions defined by q−derivative operator with respect to symmetric and conjugate points

S. O. Olatunji1 

H. Dutta2 

1 Federal University of Technology, Department of Mathematical Sciences, P. M. B. 704, Akure, Nigeria, e-mail : olatunjiso@futa.edu.ng

2 Gauhati University, Department of Mathematics, Guwahati-781014, India, hemen_dutta08@rediffmail.com

Abstract

Recently, the q−derivative operator has been used to investigate several subclasses of analytic functions in different ways with different perspectives by many researchers and their interesting results are too voluminous to discuss. For example, the extension of the theory of univalent functions can be used to describe the theory of q−calculus, q−calculus operator are also used to construct several subclasses of analytic functions and so on. In this work, we considered the FeketeSzego problem for certain analytic functions defined by q−derivative operator with respect to symmetric and conjugate points. The early few coefficient bounds were obtained to derive our results.

Keywords:  Analytic function; univalent function; q−derivative operator; subordination; coefficient bounds; coefficient inequalities

Texto completo disponible sólo en PDF.

Full text available only in PDF format.

References

[1] R.M. Ali, S.K. Lee, V. Ravichandran and S. Supramaniam, The Fekete-Szego coefficient functional for transforms of analytic functions, Bulletin of the Iranian Mathematical Society, 35 (2), pp. 119-142, (2009). [ Links ]

[2] A. Aral, V. Gupta and R.P. Agarwal, Applications of q-Calculus in Operator Theory, Springer-Verlag, New York, (2013). [ Links ]

[3] A.M. Gbolagade, S.O. Olatunji and T. Anake, Coefficient bounds for certain classes of analytic and univalent functions as related to sigmoid function, International Electronic Journal of Pure and Applied Mathematics, 7 (1), pp. 41-51, (2014). [ Links ]

[4] R.M. Goel and B.C. Mehrok, A subclass of starlike functions with respect to symmetric points, Tamkang Journal of Mathematics, 13 (1), pp. 11-24, (1982). [ Links ]

[5] S. Hussain, M.A. Alamri and M. Darus On a new class of (j, i)−symmetric function on conic regions, Journal of Nonlinear Sciences and Applications, 10, pp. 4628-4637, (2017). [ Links ]

[6] F. H. Jackson, On q-definite integrals, The Quarterly Journal of Pure and Applied Mathematics, 28, pp. 193-203, (1910). [ Links ]

[7] F. H. Jackson, On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh, 46, pp. 253-281, (1908). [ Links ]

[8] J.M. Jahangiri, C. Ramachandran and S. Annamalai, Fekete-Szego problem for certain analytic functions defined by hypergeometric functions and Jacobi Polynomial, Journal of Fractional Calculus and Applications, 9 (1), pp. 1-7, (2018). [ Links ]

[9] S. Kanas and A. Wisniowska, Conic regions and k-uniform convexity, continued fractions and geometric function theory (CONFUN), Trondheim, (1997) Journal of Computational and Applied Mathematics, 105, pp. 327-336, (1999). [ Links ]

[10] S. Kanas and A. Wisniowska, Conic domains and starlike functions, Revue Roumaine des Mathematiques Pures et Appliquees, 45, pp. 645-658, (2000). [ Links ]

[11] N. Magesh, S. Altinkaya and S. Yalcin, Construction of Toeplitz matrices whose elements are coefficient of univalent functions associated with q-derivative operator, arxiv: 1708.03600v1 (2017). [ Links ]

[12] N. Magesh, S. Altinkaya and S. Yalcin, Certain subclases of k−uniformly starlike functions associated with symmetric q−derivative operator, Journal of Computational Analysis and Applications, 24 (8), pp. 1464-1473, (2018). [ Links ]

[13] S.D. Purohit and R.K. Raina, Fractional q-calculus and certain subclases of univalent analytic functions, Mathematica, 55(78) (1), pp. 62-74, (2013). [ Links ]

[14] C. Selvaraj and N. Vasanthi, Subclasses of analytic functions with respect to symmetric and conjugate points, Tamkang Journal of Mathematics , 13 (1), pp. 11-24, (1982). [ Links ]

Received: January 2018; Accepted: April 2018

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License