SciELO - Scientific Electronic Library Online

 
vol.37 número4Fuzzy soft attribute correlation coefficient and application to data of human traffickingMultiset ideal topological spaces and local functions índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.37 no.4 Antofagasta dic. 2018

http://dx.doi.org/10.4067/S0716-09172018000400683 

Articles

A new type of difference operator Δ 3 on triple sequence spaces

Bimal Chandra Das1 

1Tripura University, Department of Mathematics, Govt. Degree College, Kamalpur-799285, Dhalai, Tripura, India, e-mail: bcdas3744@gmail.com

Abstract

In this paper we have introduced and investigated the difference triple sequence spaces c³0(Δ³), c³(Δ³), c³R(Δ³), 𝓁³(Δ³) and c³B(Δ³) applying the difference operator Δ³, on the triple sequence (xlmn) and studied some of their algebraic and topological properties. We have also proved some inclusion relation involving these sequence spaces.

Key Words: Triple sequence space; difference operator; solidity; symmetricity

Texto completo disponible sólo en PDF.

Full text available only in PDF format.

References

[1] A. Esi, Some new sequence spaces defined by a modulus function, Istanbul Univ Fen Fak Mat Derg., 55/56: pp. 17-21, (1996/97). [ Links ]

[2] A. Esi and B. C. Tripathy, Strongly almost convergent generalized difference sequences associated with multiplier sequences, Math. Slovaca, 57(4), pp. 339-348, (2007). [ Links ]

[3] A. J. Datta, A. Esi , B. C. Tripathy , Statistically convergent triple sequence spaces defined by Orlicz function, J. Math. Anal., 4(2), pp. 16-22, (2013). [ Links ]

[4] A. Sahiner, M. Gurdal and K. Duden, Triple sequences and their statistical convergence, Selcuk. J. Appl. Math., 8(2), pp. 49-55, (2007). [ Links ]

[5] A. Pringsheim, Zurtheorie der zweifachunendlichenzahlenfolgen, Math. Ann., 53, pp. 289-321, (1900). [ Links ]

[6] B. C. Das, Some I-convergent triple sequence spaces defined by a sequence of modulus function, Proyecciones J. Math., 36(1), pp. 117-130, (2017). [ Links ]

[7] B. C. Das, Six Dimensional Matrix Summability of Triple Sequences, Proyecciones J. Math. , 36(3), pp. 499-510, (2017). [ Links ]

[8] B. C. Tripathy , On generalized difference paranormed statistically convergent sequences, Indian J. Pure Appl. Math., 35 (5), pp. 655-663, (2004). [ Links ]

[9] B. C. Tripathy and B. Sarma, Statistically convergent difference double sequence spaces, Acta Math. Sinica, 24(5), pp. 737-742, (2008). [ Links ]

[10] B. C. Tripathy , B. Choudhary andB. Sarma. , On some new type generalized difference sequence spaces, Kyungpook Math. J., 48(4), pp. 613-622, (2008). [ Links ]

[11] B. C. Tripathy and H. Dutta., On some new paranormed difference sequence spaces defined by Orlicz functions, Kyungpook Math. J. , 50(1), pp. 59-69, (2010). [ Links ]

[12] B. C. Tripathy andH. Dutta., On some lacunary difference sequence spaces defined by a sequence of Orlicz functions and q-lacunary Δn m- statistical convergence, Analele Stiintifice ale Universitatii Ovidius, Seria Matematica, 20(1), pp. 417-430, (2012). [ Links ]

[13] B. C. Tripathy and R. Goswami., On triple difference sequences of real numbers in probabilistic normed spaces, Proyecciones Jour. Math., 33(2), pp. 157-174, (2014). [ Links ]

[14] E. Savas and R. F. Patterson , Double Sequece Spaces Defined by a Modulus, Math. Slovaca , 61, pp. 245-256, (2011). [ Links ]

[15] E. Saves andA. Esi , Statistical Convergence of Triple Sequences on Probabilistic Normed Spaces, An. Univ. Craiova Ser. Mat. Inform., 39(2), pp. 226-236, (2012). [ Links ]

[16] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull., 24(2), pp. 169-176, (1981). [ Links ]

[17] I. J. Maddox, Sequece Spaces Defined by a Modulus, Math. Proc. Cambridge Philos. Soc., 100, pp. 161-166, (1986). [ Links ]

[18] M. Et andA. Esi , On Kothe-Toeplitz duals of generalized difference Sequence Spaces, Bul. Malaysian Math. Sci. Soc., (Second Series), 23, pp. 1-8, (2000). [ Links ]

[19] M. Et and R. Colak, On some generalized difference sequence spaces, Soochow J. Math., 21, pp. 377-386, (1995). [ Links ]

[20] S. Debnath, B. C. Das, Some new type of difference triple sequence spaces, Palestine J. Math., 4 (2), pp. 284-290, (2015). [ Links ]

[21] S. Debnath , B. Sharma, B. C. Das , Some generalized triple sequence spaces of real numbers, J. Nonlinear Anal. Opti., 6 (1), pp. 71-79,(2015). [ Links ]

[22] S. Debnath , B. C. Das , D. Bhattacharya, J. Debnath, Regular matrix transformation on triple sequence spaces. Bol. Soc. Paran. Mat., 35 (1), pp. 85-96, (2017). [ Links ]

[23] W. H. Ruckle, On perfect Symmetric BK-spaces, Math. Ann. , 175, pp. 121-126, (1968) [ Links ]

Received: January 2018; Accepted: May 2018

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License