SciELO - Scientific Electronic Library Online

 
vol.37 número4Quiver representations and their applications índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.37 no.4 Antofagasta dic. 2018

http://dx.doi.org/10.4067/S0716-09172018000400805 

Articles

Generalized centroid of Γ-semirings

Hasret Durna1 

Damla Yilmaz2 

1 Cumhuriyet University, Department of Mathematics, Faculty of Sciences, 58140 Sivas, Turkey, e-mail: hyazarli@cumhuriyet.edu.tr

2 Cumhuriyet University, Department of Mathematics, Faculty of Sciences, 58140 Sivas, Turkey, e-mail: dmlylmz36@gmail.com

Abstract

We define and study the generalized centroid of a semiprime Γ-semiring. We show that the generalized centroid CΓ is a multiplicatively reguler Γ-semiring and so Γ-semifield and give some properties of the generalized centroid of a semiprime Γ-semiring.

Keywords: Semiring; quotient semiring; gamma-semiring; quotient gamma-semiring

Texto completo disponible sólo en PDF.

Full text available only in PDF format.

Acknowledgement 1.

The work was supported by grants from CUBAP (F-443).

References

[1] Dutta, T. K. and Sardar, S. K. : Semiprime ideals and irreducible ideals of Γ-semirings, Novi Sad J. Math., 30 (1), pp. 97-108, (2000). [ Links ]

[2] Dutta, T. K. and Sardar, S. K. : On the operator semirings of a Γ-semiring; Southeast Asian Bull. Math., 26, pp. 203-213, (2002). [ Links ]

[3] Rao, M. M. K. : Γ-semirings-I, Southeast Asian Bull. of Math., 19, pp. 49-54, (1995). [ Links ]

[4] Rao, M. M. K. : Γ-semiring-II, Southeast Asian Bull. of Math. , 21, pp. 281-287, (1997). [ Links ]

[5] Sardar,S. K. and Dasgupta, U. : On primitive Γ-semiring, Novi Sad J. Math. , 34 (1), pp. 1-12, (2004). [ Links ]

[6] Sardar, S.K. : A Note on Γ-Semifield, Int. Math. Forum, 6 (18), pp. 875-879, (2011). [ Links ]

[7] Yazarlı, H. and Öztürk, M. A. ; On the centroid of the prime semirings, Turk Journal of Mathematics, 37 (4), pp. 577-584, (2013). [ Links ]

[8] Öztürk, M. A. : The Extended Centroid Of The Prime Γ-semirings, Analele Stiintifice ale Universitatii Al I Cuza din Iasi - Matematica, 62 (1), pp. 21-32, (2016). [ Links ]

[9] Öztürk, M. A. and Jun Y. B. : On the centroid of the prime gamma rings, Comm. Korean Math. Soc. 15 (3), pp. 469-479, (2000). [ Links ]

[10] Öztürk, M. A. and Jun Y. B. : On the centroid of the prime gamma rings II, Turkish J. Math. 25 (3), pp. 367-377, (2001). [ Links ]

[11] Öztürk, M. A. and Jun Y. B. : Regularity of the generalized centroid of semiprime gammarings, Commun. Korean Math. Soc. 19 (2), pp. 233-242, (2004). [ Links ]

Received: April 2018; Accepted: May 2018

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License