SciELO - Scientific Electronic Library Online

 
vol.38 número3Oscillation of solutions to a generalized forced nonlinear conformable fractional differential equationRainbow neighbourhood number of graphs índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.38 no.3 Antofagasta ago. 2019

http://dx.doi.org/10.22199/issn.0717-6279-2019-03-0029 

Articles

Stability of two variable pexiderized quadratic functional equation in intuitionistic fuzzy Banach spaces

P. Saha1 

T. K. Samanta2 
http://orcid.org/0000-0003-0521-0747

P. Mondal3 

B. S. Choudhury4 
http://orcid.org/0000-0001-7057-5924

1Indian Institute Of Engineering Science and Technology, Shibpur, Department of Mathematics, Shibpur, Howrah - 711103, West Bengal, India. e-mail: parbati_saha@yahoo.co.in

2Uluberia College, Department of Mathematics, Uluberia, Howrah, West Bengal, 711315, India. e-mail : mumpu−tapas5@yahoo.co.in

3Bijoy Krishna Girls’ College, Department of Mathematics, Howrah - 711101, West Bengal, India. e-mail : pratapmondal111@gmail.com

4Indian Institute Of Engineering Science and Technology, Department of Mathematics, Shibpur, Howrah - 711103, West Bengal, India. e-mail : binayak12@yahoo.co.in

Abstract

The present work is about the stability of a Pexiderised quadratic functional equation. The study is in the framework of intuitionistic fuzzy Banach spaces. The approach is through a fixed point method. The stability studied is Hyers-Ulam-Rassias stability type.

Keywords: Hyers-Ulam stability; Pexider type functional equation; Intuitionistic fuzzy norm; Alternative fixed point theorem

Mathematics Subject Classification (2010):  03E72; 97I70; 39B82

Texto completo disponible sólo en PDF.

Full text available only in PDF format.

Acknowledgements

The authors gratefully acknowledge the suggestions made by the learned referee.

References

[1] A. Grabiec, “The generalized Hyers-Ulam stability of a class of functional equations,” Publicationes Mathematicae Debrecen, vol. 48, no. 3-4, pp. 217-235, 1996. [On line]. Available: http://bit.ly/2yGmNbKLinks ]

[2] A. Mirmostafaee and M. Moslehian, “Fuzzy versions of Hyers-Ulam-Rassias theorem,”Fuzzy Sets and Systems, vol. 159, no. 6, pp. 720-729, Mar. 2008., doi: 10.1016/j.fss.2007.09.016. [ Links ]

[3] D. Hyers, “On the Stability of the Linear Functional Equation,” Proceedings of the National Academy of Sciences, vol. 27, no. 4, pp. 222-224, Apr. 1941, doi: 10.1073/pnas.27.4.222. [ Links ]

[4] D. Miheţ, “The fixed point method for fuzzy stability of the Jensen functional equation,” Fuzzy Sets and Systems , vol. 160, no. 11, pp. 1663-1667, Jun. 2009, doi: 10.1016/j.fss.2008.06.014. [ Links ]

[5] G. Deschrijver and E. Kerre, “On the relationship between some extensions of fuzzy set theory,” Fuzzy Sets and Systems , vol. 133, no. 2, pp. 227-235, Jan. 2003, doi: 10.1016/S0165-0114(02)00127-6. [ Links ]

[6] J. B. Diaz and B. Margolis, “A fixed point theorem of the alternative, for contractions on a generalized complete metric space,”Bulletin of the American Mathematical Society, vol. 74, no. 2, pp. 305-310, Mar. 1968, doi: 10.1090/S0002-9904-1968-11933-0. [ Links ]

[7] K. Atanassov, “Intuitionistic fuzzy sets,”Fuzzy Sets and Systems , vol. 20, no. 1, pp. 87-96, Aug. 1986, doi: 10.1016/S0165-0114(86)80034-3. [ Links ]

[8] L. Zadeh, “Fuzzy sets,”Information and Control, vol. 8, no. 3, pp. 338-353, Jun. 1965, doi: 10.1016/S0019-9958(65)90241-X. [ Links ]

[9] L. Cădariu and V. Radu, “Fixed Points and Stability for Functional Equations in Probabilistic Metric and Random Normed Spaces,”Fixed Point Theory and Applications, vol. 2009, pp. 1-19, Nov. 2009, doi: 10.1155/2009/589143. [ Links ]

[10] N. Kayal, T. Samanta, P. Saha, and B. Choudhury, “A Hyers-Ulam-Rassias stability result for functional equations in Intuitionistic Fuzzy Banach spaces,” Iranian Journal Fuzzy Systems, vol. 13, no. 5, pp. 87-96, 2016, doi: 10.22111/IJFS.2016.2755. [ Links ]

[11] P. Mondal, N. Kayal, T. Samanta, “The stability of Pexider type functional equation in intuitionistic fuzzy Banach spaces via fixed point technique,” Journal of. Hyperstructures, vol. 4, no. 1, pp. 37-49, Jun. 2015. [On line]. Available: http://bit.ly/2YB6E20Links ]

[12] P. Mondal, N. Kayal, T. Samanta, “Stability of a quadratic functional equation in intuitionistic fuzzy Banach spaces,” Journal of New Results in Science, vol. 5, no. 10, pp. 52-59, 2016. [On line]. Available: http://bit.ly/2GKSOnQLinks ]

[13] P. Gavruta, “A Generalization of the Hyers-Ulam-Rassias Stability of Approximately Additive Mappings,”Journal of Mathematical Analysis and Applications, vol. 184, no. 3, pp. 431-436, Jun. 1994, doi: 10.1006/jmaa.1994.1211. [ Links ]

[14] P. Cholewa, “Remarks on the stability of functional equations,”Aequationes Mathematicae, vol. 27, no. 1, pp. 76-86, Mar. 1984, doi: 10.1007/BF02192660. [ Links ]

[15] R. Saadati and J. Park, “On the intuitionistic fuzzy topological spaces,”Chaos, Solitons & Fractals, vol. 27, no. 2, pp. 331-344, Jan. 2006, doi: 10.1016/j.chaos.2005.03.019. [ Links ]

[16] S. Mohiuddine and H. Şevli, “Stability of Pexiderized quadratic functional equation in intuitionistic fuzzy normed space,”Journal of Computational and Applied Mathematics, vol. 235, no. 8, pp. 2137-2146, Feb. 2011, doi: 10.1016/j.cam.2010.10.010. [ Links ]

[17] S. Czerwik, “On the stability of the quadratic mapping in normed spaces,”Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol. 62, no. 1, pp. 59-64, Dec. 1992, doi: 10.1007/BF02941618. [ Links ]

[18] S. Jung, “Hyers-Ulam stability of linear differential equations of first order, II,”Applied Mathematics Letters, vol. 19, no. 9, pp. 854-858, Sep. 2006, doi: 10.1016/j.aml.2005.11.004. [ Links ]

[19] S. Jung, “On the Hyers-Ulam Stability of the Functional Equations That Have the Quadratic Property,”Journal of Mathematical Analysis and Applications, vol. 222, no. 1, pp. 126-137, Jun. 1998, doi: 10.1006/jmaa.1998.5916. [ Links ]

[20] S. Jung, “Quadratic functional equations of Pexider type,”International Journal of Mathematics and Mathematical Sciences, vol. 24, no. 5, pp. 351-359, 2000, doi: 10.1155/S0161171200004075. [ Links ]

[21] S. Ulam, “Some Questions in Analysis,” inProblems in Modern Mathematics, New York: John Wiley & Sons, Inc., 1964. [ Links ]

[22] S. Shakeri, “Intuitionistic Fuzzy Stability Of Jensen Type Mapping,”Journal of Nonlinear Sciences and Applications, vol. 02, no. 02, pp. 105-112, May 2009, doi: 10.22436/jnsa.002.02.05. [ Links ]

[23] T. Aoki, “On the Stability of the linear Transformation in Banach Spaces,”Journal of the Mathematical Society of Japan, vol. 2, no. 1-2, pp. 64-66, Sep. 1950, doi: 10.2969/jmsj/00210064. [ Links ]

[24] T. Samanta, N. Kayal and P. Mondal, “The stability of a general quadratic functional equation in fuzzy Banach spaces,” Journal of Hyperstructures, vol. 1, no. 2, pp. 71-87, Dec. 2012. [On line]. Available: http://bit.ly/2M08VlnLinks ]

[25] N. Kayal, P. Mondal and T. Samanta, “The generalized Hyers-Ulam-Rassias stability of a quadratic functional equation in fuzzy Banach spaces,” Journal of New Results in Science , vol. 3, no. 5, pp. 83-95, 2014, [On line]. Available: http://bit.ly/2T2y3sCLinks ]

[26] T. Xu, M. Rassias, W. Xu and J. Rassias, “A fixed point approach to the intuitionistic fuzzy stability of quintic and sextic functional equations,” Iranian Journal Fuzzy Systems , vol. 9, no. 5 pp. 21-40, 2012, doi: 10.22111/IJFS.2012.102. [ Links ]

[27] T. Rassias, “On the Stability of Functional Equations in Banach Spaces,”Journal of Mathematical Analysis and Applications , vol. 251, no. 1, pp. 264-284, Nov. 2000, doi: 10.1006/jmaa.2000.7046. [ Links ]

[28] V. Radu, “The fixed point alternative and the stability of functional equations,” Fixed Point Theory, vol. 4, no. 1, pp. 91-96, 2003. [On line]. Available: http://bit.ly/31keaQFLinks ]

[29] Y. Dong, “On approximate isometries and application to stability of a functional equation,”Journal of Mathematical Analysis and Applications , vol. 426, no. 1, pp. 125-137, Jun. 2015, doi: 10.1016/j.jmaa.2015.01.045. [ Links ]

[30] Z. Wang, T. Rassias, and R. Saadati, “Intuitionistic fuzzy stability of Jensen-type quadratic functional equations,”Filomat, vol. 28, no. 4, pp. 663-676, 2014, doi: 10.2298/FIL1404663W. [ Links ]

Received: March 2018; Accepted: April 2019

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License