SciELO - Scientific Electronic Library Online

 
vol.38 número3Hyers-Ulam stability of n th order linear differential equationNote on extended hypergeometric function índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.38 no.3 Antofagasta ago. 2019

http://dx.doi.org/10.22199/issn.0717-6279-2019-03-0036 

Articles

A transmuted version of the generalized half-normal distribution

Hugo S. Salinas1 

Yuri A. Iriarte2 

Juan M. Astorga3 

1Universidad de Atacama, Departamento de Matemática, Facultad de Ingeniería, Copiapó, Chile. e-mail: hugo.salinas@uda.cl

2Universidad de Antofagasta, Departamento de Matemáticas, Facultad de Ciencias Básicas, Antofagasta, Chile. e-mail: yuri.iriarte@uantof.cl

3Universidad de Atacama, Departamento de Tecnologías de la Energía, Facultad Tecnológica, Copiapó, Chile. e-mail: juan.astorga@uda.cl

Abstract

An extension of the generalized half-normal distribution, given by Cooray and Ananda [5], is proposed and studied. We use the quadratic rank transmutation map to generate a transmuted version of the generalized half-normal distribution. We study some probability properties, discuss maximum likelihood estimation and present real data application indicating that the new distribution can improve the generalized half-normal distribution in fitting real data.

Keywords: Generalized half-normal distribution; Half-normal distribution; Maximum likelihood; Quadratic rank transmutation map; Transmuted distribution

Texto completo disponible sólo en PDF.

Full text available only in PDF format.

References

[1] H. Akaike, “A new look at the statistical model identification”,IEEE Transactions on Automatic Control, vol. 19, no. 6, pp. 716-723, Dec. 1974, doi: 10.1109/TAC.1974.1100705. [ Links ]

[2] G. Aryal and C. Tsokos, “On the transmuted extreme value distribution with application”,Nonlinear Analysis: Theory, Methods & Applications, vol. 71, no. 12, Dec. 2009, doi: 10.1016/j.na.2009.01.168. [ Links ]

[3] G. Aryal andC. Tsokos , “Transmuted weibull distribution: a generalization of the weibull probability distribution”, European Journal Of Pure and Applied Mathematics, vol. 4, no. 2, pp. 89-102, 2011. [On line]. Available: http://bit.ly/2OPBuUXLinks ]

[4] R. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory algorithm for bound constrained optimization”,SIAM Journal on Scientific Computing, vol. 16, no. 5, pp. 1190-1208, Sep. 1995, doi: 10.1137/0916069. [ Links ]

[5] K. Cooray and M. Ananda, “A generalization of the half-normal distribution with applications to lifetime data”,Communications in Statistics - Theory and Methods, vol. 37, no. 9, pp. 1323-1337, Mar. 2008, doi: 10.1080/03610920701826088. [ Links ]

[6] J. Devore,Probabilidad y estadística para ingeniería y ciencias, vol. 6. México, DF: Thomson Learning, 2005. [ Links ]

[7] R. Hogg and E. Tanis,Probability and statistical inference, 6th ed. New York, NY: Macmillan Publishing Company, c1993. [ Links ]

[8] J. McDonald and R. Butler, “Regression models for positive random variables”,Journal of Econometrics, vol. 43, no. 1-2, pp. 227-251, Jan. 1990, doi: 10.1016/0304-4076(90)90118-D. [ Links ]

[9] F. Merovci, “Transmuted Rayleigh distribution”,Austrian Journal of Statistics, vol. 42, no. 1, pp. 21-31, Feb. 2016, doi: 10.17713/ajs.v42i1.163. [ Links ]

[10] F. Merovci , “Transmuted generalized Rayleigh distribution”,Journal of Statistics Applications & Probability, vol. 3, no. 1, pp. 9-20, Mar. 2014, doi: 10.18576/jsap/030102. [ Links ]

[11] R. Core Team, “R: A language and environment for statistical computing. R foundation for statistical computing”,Global Biodiversity Information Facility, 10-Feb-2015. [Online]. Available: https://www.R-project.orgLinks ]

[12] G. Schwarz, “Estimating the dimension of a model”,The Annals of Statistics, vol. 6, no. 2, pp. 461-464, Mar. 1978, doi: 10.1214/aos/1176344136. [ Links ]

[13] W. Shaw and I. Buckley , “The alchemy of probability distributions: beyond Gram-Charlier expansions and a skew-kurtotic-normal distribution from a rank transmutation map”, 2009, arXiv:0901.0434. [ Links ]

Received: May 2018; Accepted: June 2019

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License