SciELO - Scientific Electronic Library Online

 
vol.38 número4A relation of Banach limit and difference matrix to generate some Orlicz sequence spaces índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.38 no.4 Antofagasta dic. 2019

http://dx.doi.org/10.22199/issn.0717-6279-2019-04-0040 

Articles

On flow of electric current in RL circuit using Hilfer type composite fractional derivative

1Charotar University of Science and Technology, Dept. of Mathematical Sciences, PDPIAS, Changa, GJ, India. e-mail: krunalmaths@hotmail.com

2Sardar Patel University, Dept. of Mathematics, Vallabh Vidyanagar, GJ, India. e-mail: jyotindra18@rediffmail.com

3Charotar University of Science and Technology, Dept. of Electrical Engineering, Changa, GJ, India. email kartikpandya.ee@charusat.ac.in

4Marwadi University, Dept. of Electrical Engineering, Rajkot, GJ, India. e-mail: rajendrasinh.jadeja@marwadieducation.edu.in

Abstract

This paper deals with an interdisciplinary research work between Mathematical sciences and Electrical engineering to develop fractional model of Resistance-Inductance circuit (RL circuit). Authors obtained the analytical solution of this fractional model in terms of Mittag Leffler function. Graphical interpretation of solution also discussed in this paper.

Keywords: Resistance-Inductance circuit; Fractional differential equation; Mittag-Leffler function; Laplace transforms; Hilfer derivatives

Texto completo disponible sólo en PDF.

Full text available only in PDF format.

Acknowledgement

Authors are grateful to the referees/reviewers for their valuable comments and suggestions for the betterment of paper.

References

[1] A. Kilbas, H. Srivastava, and J. Trujillo, Eds., Theory and applications of fractional differential equations. Amsterdam: Elsevier, 2006. [On line]. Available: http://bit.ly/2lLbn3LLinks ]

[2] A. Carpinteri and F. Mainardi, Eds., Fractals and fractional calculus in continuum mechanics. Springer: Vienna, 1997, doi: 10.1007/978-3-7091-2664-6. [ Links ]

[3] A. Obeidat, M. Gharaibeh, M. Al-Ali and A. Rousan, “Evolution of a current in a resistor”, Fractional calculus and applied analysis, vol. 14, no. 2, pp. 247-259, Jan. 2011, doi: 10.2478/s13540-011-0015-7. [ Links ]

[4] A. Rousan, N. Ayoub, A. Alzoubi, H. Khateeb, M. Al-Qadi, M. Hasan and B. Albiss, “A fractional LC-RC circuit”, Fractional calculus and applied analysis , vol. 9, no. 1, pp. 33-41, 2006. [On line]. Available: http://bit.ly/2mugndn Links ]

[5] A. Shukla and J. Prajapati, “On a generalization of Mittag-Leffler function and its properties”, Journal of mathematical analysis and applications, vol. 336, no. 3, pp. 797-811, Dec. 2007, doi: 10.1016/j.jmaa.2007.03.018. [ Links ]

[6] I. Jeses and J. Machado, “Fractional control of heat diffusion systems”, Nonlinear dynamics, vol. 54, no. 3, pp. 263-282, Dec. 2008, doi: 10.1007/s11071-007-9322-2. [ Links ]

[7] A. Wiman, “Über den fundamentalsatz in der teorie der funktionen Ea(x)“, Acta Mathematica, vol. 29, no. 1, pp. 191-201, 1905, doi: 10.1007/BF02403202. [ Links ]

[8] E. Kreyszig, Advanced engineering mathematics, 8th ed. New York (NY): John Wiley & Sons, Inc, 2007. [ Links ]

[9] G. Tsirimokou and C. Psychalinos, "Ultra-low voltage fractional-order circuits using current mirrors" ,International journal of circuit theory and applications, vol. 44, no. 1, pp. 109-126, Feb. 2015, doi: 10.1002/cta.2066. [ Links ]

[10] I. Podulbuny, Fractional differential equations, New York (NY): Academic Press, 1999. [ Links ]

[11] J. Prajapati and K. Kachhia, “Fractional modeling of temperature distribution and heat flux in the semi infinite solid”, Journal of fractional calculus and applications, vol. 5, no. 2, pp. 38-43, Jul. 2014. [On line]. Available: http://bit.ly/2miHCb2Links ]

[12] J. Prajapati, K. Kachhia, and S. Kosta, “Fractional calculus approach to study temperature distribution within a spinning satellite”,Alexandria engineering journal, vol. 55, no. 3, pp. 2345-2350, Sep. 2016, doi: 10.1016/j.aej.2016.05.004. [ Links ]

[13] J. Dubbeldam, Z. Tomovski and T. Sandev, “Space-Time Fractional Schrödinger equation with composite time fractional derivative”, Fractional calculus and applied analysis , vol. 18, no. 5, pp. 1179-1200, Oct. 2015, doi: 10.1515/fca-2015-0068. [ Links ]

[14] J. Gómez-Aguilar, R. Escobar-Jiménez, V. Olivares-Peregrino, M. Taneco-Hernández, and G. Guerrero-Ramírez, “Electrical circuits RC and RL involving fractional operators with bi-order” ,Advances in mechanical engineering, vol. 9, no. 6, pp. 1-10, Jun. 2017, doi: 10.1177/1687814017707132. [ Links ]

[15] K. Kachhia andJ. Prajapati , “Solution of fractional partial differential equation aries in study of heat transfer through diathermanous materials”, Journal of interdisciplinary mathematics, vol. 18, no. 1-2, pp. 125-132, Mar. 2015, doi: 10.1080/09720502.2014.996017. [ Links ]

[16] K. Kachhia andJ. Prajapati , “On generalized fractional kinetic equations involving generalized Lommel-Wright functions”,Alexandria engineering journal , vol. 55, no. 3, pp. 2953-2957, Sep. 2016, doi: 10.1016/j.aej.2016.04.038. [ Links ]

[17] M. Caputo, Elasticità e dissipazione, Bologna: Zanichelli, 1969. [ Links ]

[18] M. Guía, F. Gómez and J. Rosales, “Analysis on the time and frequency domain for the RC electric circuit of fractional order”,Open physics, vol. 11, no. 10, Oct. 2013, doi: 10.2478/s11534-013-0236-y. [ Links ]

[19] P. Shah, A. Patel, I. Salehbhai, and A. Shukla, “Analytic solution for the RL electric circuit model in fractional order”,Abstract and applied analysis, vol. 2014, ID 343814, Jun. 2014, doi: 10.1155/2014/343814. [ Links ]

[20] R. Hilfer, Applications of fractional calculus in physics, Singapore: World scientific, 2000. [ Links ]

[21] R. Hilfer, “Experimental evidence for fractional time evolution in glass forming materials”,Chemical physics, vol. 284, no. 1-2, pp. 399-408, Nov. 2002, doi: 10.1016/S0301-0104(02)00670-5. [ Links ]

[22] R. Saxena, A. Mathai, and H. Haubold, “Space-time fractional reaction-diffusion equations associated with a generalized Riemann-Liouville fractional derivative”,Axioms, vol. 3, no. 3, pp. 320-334, Aug. 2014, doi: 10.3390/axioms3030320. [ Links ]

[23] R. Saxena, Z. Tomovski and T. Sandev, “Fractional Helmholtz and fractional wave equations with Riesz-Feller and generalized Riemann-Liouville fractional derivatives”, European journal of pure and applied mathematics, vol. 7, no. 3, pp. 312-334, Aug. 2014. [On line]. Available: http://bit.ly/2nZzigILinks ]

[24] S. Purohit, “Solution of fractional partial differential equations of quantum mechanics”, Advances in Applied Mathematics and Mechanics, vol. 5, no. 5, pp. 639-651, Oct. 2011, doi: 10.1017/S2070073300002356. [ Links ]

[25] T. Kaczorek and K. Rogowski, “Positive fractional electrical circuits”, inFractional Linear Systems and Electrical Circuits, vol. 13, Cham: Springer, 2015, pp. 49-80, doi: 10.1007/978-3-319-11361-6_2. [ Links ]

[26] T. Sandev, R. Metzler, and Ž. Tomovski, “Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative”,Journal of physics A: mathematical and theoretical, vol. 44, no. 25, p. 255203, May 2011, doi: 10.1088/1751-8113/44/25/255203. [ Links ]

[27] T. Sandev, Z. Tomovski, and B. Crnkovic, “Generalized distributed order diffusion equations with composite time fractional derivative”,Computers & mathematics with applications, vol. 73, no. 6, pp. 1028-1040, Mar. 2017, doi: 10.1016/j.camwa.2016.07.009. [ Links ]

[28] V. Toro,Electrical engineering fundamentals, 2nd ed. Delhi: Prentice-Hall, 2002. [ Links ]

[29] Ž. Tomovski, T. Sandev, R. Metzler, and J. Dubbeldam, “Generalized space-time fractional diffusion equation with composite fractional time derivative”,Physica A: Statistical Mechanics and its Applications, vol. 391, no. 8, pp. 2527-2542, Apr. 2012, doi: 10.1016/j.physa.2011.12.035. [ Links ]

Received: December 2017; Accepted: July 2019

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License