SciELO - Scientific Electronic Library Online

 
vol.38 número4A relation of Banach limit and difference matrix to generate some Orlicz sequence spacesNeutral stochastic functional differential evolution equations driven by Rosenblatt process with varying-time delays índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.38 no.4 Antofagasta dic. 2019

http://dx.doi.org/10.22199/issn.0717-6279-2019-04-0042 

Articles

Extended results on sum divisor cordial labeling

1 Government Arts College, Department of Mathematics, Tiruvannamalai - 606 603,Tamil Nadu, India. e-mail: sugumaranaruna@gmail.com

2 Government Arts College, Department of Mathematics, Tiruvannamalai - 606 603, Tamil Nadu, India.e-mail: k.rajesh3429@gmail.com

Abstract

A sum divisor cordial labeling of a graph G with vertex set V (G) is a bijection f : V (G) → {1, 2, ..., |V (G)|} such that an edge uv assigned the label 1 if 2 divides f(u)+f(v) and 0 otherwise. Further the number of edges labeled with 0 and the the number of edges labeled with 1 differ by atmost 1. A graph with sum divisor cordial labeling is called a sum divisor cordial graph. In this paper we prove that the graphs P n + P n (n is odd), P n @K 1,m , Cn@K 1,m (n is odd), W n * K 1,m (n is even), < K₁¹ ,n,n ∆K₁²2 ,n,n >, < Fl n ¹∆Fl n ² > are sum divisor cordial graphs.

Keywords: Divisor cordial labeling; Sum divisor cordial labeling.

Texto completo disponible sólo en PDF.

Full text available only in PDF format.

References

[1] J. Gallian, “A Dynamic Survey of Graph Labeling”, 20th ed. The electronics journal of combinatorics, vol. # DS6, p. 432, 2007. [On line]. Available: http://bit.ly/33bdu1B Links ]

[2] F. Harary, Graph theory. Reading, MA: Addison-Wesley, 1972. [ Links ]

[3] G. Ghodasara and M. Patel, “Some new combination graphs”, International journal of mathematics and its applications, vol. 5, no. 2-A, pp. 153-161, 2017. [On line]. Available: https://bit.ly/2nCU8CSLinks ]

[4] V. Kaneria and H. Makadia, “Graceful labeling for plus graph”, International journal of current research in science and technology, vol.1, no. 3, pp. 15-20, 2015. [On line]. Available: https://bit.ly/2pjtOhuLinks ]

[5] A. Lourdusamy and F. Patrick, “Sum divisor cordial graphs”, Proyecciones (Antofagasta, On line), vol. 35, no. 1, pp. 119-136, Mar. 2017, doi: 10.4067/S0716-09172016000100008. [ Links ]

[6] A. Sugumaran and K. Rajesh, ”Some new results on sum divisor cordial graphs” , Annals of pure and applied mathematics, vol. 14, no. 1, pp. 45-52, Jul. 2017, doi: 10.22457/apam.v14n1a6. [ Links ]

[7] A. Sugumaran and K. Rajesh, “Sum divisor cordial labeling of Theta graph”, Annals of pure and applied mathematics, vol. 14, no. 2, pp. 313-320, Sep. 2017, doi: 10.22457/apam.v14n2a14. [ Links ]

[8] A. Sugumaran and K. Rajesh, “Sum divisor cordial labeling of Herschel graph”, Annals of pure and applied mathematics, vol. 14, no.3, pp. 465-472, Oct. 2017, doi: 10.22457/apam.v14n3a14. [ Links ]

[9] A. Sugumaran and K. Rajesh, “Further results on sum divisor cordial labeling” , Journal of computer and mathematical sciences, vol. 8, no. 12, pp. 802-807, Dec. 2017, doi: 10.29055/jcms/721. [ Links ]

[10] A. Sugumaran and K. Rajesh, “Some graph operations on sum divisor cordial labeling related to H-graph” , International journal of statistics and applied mathematics, vol. 3, no. 1, pp. 389-395, 2018. [On line]. Available: https://bit.ly/2orKq6kLinks ]

[11] R. Varatharajan, S. Navaneethakrishnan and K. Nagarajan, “Divisor cordial graph”, International journal of mathematical combinatorics, vol. 4, pp. 15-25, Dec. 2011. [On line]. Available: https://bit.ly/2pjygwKLinks ]

Received: April 2018; Accepted: July 2019

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License