SciELO - Scientific Electronic Library Online

vol.38 número4On p-adic gamma function related to q-Daehee polynomials and numbersOn asymptotic commutativity degree of finite groups índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.38 no.4 Antofagasta dic. 2019 


On the inverse eigenproblem for symmetric and nonsymmetric arrowhead matrices

1Universidad de Tarapacá, Dept. de Matemática, Arica, Chile. e-mail:

2Universidad de Tarapacá, Dept. de Matemática, Arica, Chile, e-mail:

3Universidad Católica del Norte, Dept. de Matemáticas, Antofagasta, Chile, e-mail:

4Universidad del Bío-Bío, Dept de Matemática, Concepción, Chile, e-mail :


We present a new construction of a symmetric arrow matrix from a particular spectral information: let λ(n) 1 be the minimal eigenvalue of the matrix and λj (j) , j = 1, 2, . . . , n the maximal eigenvalues of all leading principal submatrices of the matrix. We use such a procedure to construct a nonsymmetric arrow matrix from the same spectral information plus to an eigenvector x(n) = (x1, x2, . . . , xn), so that (x(n), λn (n)) is an eigenpair of the matrix. Moreover, our results generate an algorithmic procedure to compute a solution matrix.

Keywords: Arrow matrices; Symmetric and nonsymmetric matrix; Inverse eigenvalue problem.

Texto completo disponible sólo en PDF.

Full text available only in PDF format.


We thank Professor Hector Miranda for suggestions and comments to improve this article.

Supported by Proyecto Mayor de Investigación Científica y Tecnológica UTA 4747-19


[1] M. Bixon and J. Jortner, “Intramolecular radiationless transitions”, The Journal of chemical physics, vol. 48, no. 2, pp. 715-726, 1968, doi: 10.1063/1.1668703. [ Links ]

[2] M. Chu and G. Golub, Inverse eigenvalue problems: theory, algorithms, and applications. Oxford: Oxford University Press, 2005, doi: 10.1093/acprof:oso/9780198566649.001.0001. [ Links ]

[3] E. Jessup, “A case against a divide and conquer approach to the nonsymmetric eigenvalue problema”, Applied numerical mathematics, vol. 12, no. 5, pp. 403-420, Jul. 1993, doi: 10.1016/0168-9274(93)90101-V. [ Links ]

[4] V. Higgins and C. Johnson, “Inverse spectral problems for collections of leading principal submatrices of tridiagonal matrices”, Linear algebra and its applications, vol. 489, pp. 104-122, Jan. 2016, doi: 10.1016/j.laa.2015.10.004. [ Links ]

[5] A. Nazari and Z. Beiranvand, “The inverse eigenvalue problem for symmetric quasi anti-bidiagonal matrices”, Applied mathematics and computation, vol. 217, no. 23, pp. 9526-9531, Aug. 2011, doi: 10.1016/j.amc.2011.03.031. [ Links ]

[6] Z. Li, C. Bu and W. Hui, “Inverse eigenvalue problem for generalized arrow-like matrices”, Applied mathematics, vol. 2, no. 12, pp. 1443-1445, Dec. 2011, doi: 10.4236/am.2011.212204. [ Links ]

[7] J. Peng, X. Hu and L. Zhang, “Two inverse eigenvalue problems for a special kind of matrices”, Linear algebra and its applications , vol. 416, no. 2-3, pp. 336-347, Jul. 2006, doi: 10.1016/j.laa.2005.11.017. [ Links ]

[8] H. Pickmann, J. Egaña and R. Soto, “Extremal inverse eigenvalue problema for bordered diagonal matrices”, Linear algebra and its applications , vol. 427, no. 2-3, pp. 256-271, Dec. 2007, doi: 10.1016/j.laa.2007.07.020. [ Links ]

[9] H. Pickmann , J. Egaña andR. Soto , “Extreme spectra realization by real symmetric tridiagonal and real symmetric arrow matrices”, Electronic journal of linear algebra, vol. 22, pp. 780-795, 2011, doi: 10.13001/1081-3810.1474. [ Links ]

[10] H. Pickmann , S. Arela, J. Egaña andR. Soto , “Extreme spectra realization by real nonsymmetric tridiagonal and real nonsymmetric arrow matrices”, Mathematical problems in engineering, vol. 2019, Article ID 3459017, Mar. 2019, doi: 10.1155/2019/3459017. [ Links ]

[11] H. Najafi, S. Edalatpanah and G. Gravvanis, “An efficient method for computing the inverse of arrowhead matrices”, Applied mathematics letters, vol. 33, pp. 1-5, Jul. 2014, doi: 10.1016/j.aml.2014.02.010. [ Links ]

[12] L. Shen and B. Suter, “Bounds for eigenvalues of arrowhead matrices and their applications to hub matrices and wireless communications”, EURASIP Journal on advances in signal processing, vol. 2009, Article ID 379402, Dec. 2019, doi: 10.1155/2009/379402. [ Links ]

[13] W. Wanicharpichat, “Explicit minimum polynomial, eigenvector, and inverse formula for nonsymmetric arrowhead matrix”, International journal of pure and applied mathematics, vol. 108, no. 4, pp. 967-984, 2016, doi: 10.12732/ijpam.v108i4.21. [ Links ]

Received: May 2019; Accepted: June 2019

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License