SciELO - Scientific Electronic Library Online

 
vol.38 número4On asymptotic commutativity degree of finite groupsNew bounds on the distance Laplacian and distance signless Laplacian spectral radii índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.38 no.4 Antofagasta dic. 2019

http://dx.doi.org/10.22199/issn.0717-6279-2019-04-0055 

Articles

Construction of sequences of borderenergetic graphs

S. K. Vaidya1 

K. M. Popat2 

1Saurashtra University, Rajkot, GJ, India, e-mail : samirkvaidya@yahoo.co.in

2Atmiya University, Rajkot , GJ, India, e.mail: kalpeshmpopat@gmail.com

Abstract

The graphs whose energy is same as that of complete graphs are known as borderenergetic graphs. We propose a procedure for the construction of borderenergetic graphs and investigate three sequences of borderenergetic graphs.

Keywords: Eigenvalues; Energy of Graphs; Borderenergetic Graphs

Texto completo disponible sólo en PDF.

Full text available only in PDF format.

Acknowledgement

The authors thank the anonymous referees for their valuable suggestions leading to the improvement of the original manuscript.

References

[1] D. West, Introduction to graph theory, 2nd ed. Chennai, TN: Pearson India, 2000. [ Links ]

[2] S. Lang, Algebra, 3rd ed., vol. 211. New York, NY: Springer, 2002, doi: 10.1007/978-1-4613-0041-0. [ Links ]

[3] D. Cvetković , P. Rowlinson and Simić Slobodan ,An introduction to the theory of graph spectra, vol. 75. Cambridge: Cambridge University Press, 2010, doi: 10.1017/CBO9780511801518. [ Links ]

[4] X. Li, Y. Shi, and I. Gutman, Graph energy. New York, NY: Springer , 2012, doi: 10.1007/978-1-4614-4220-2. [ Links ]

[5] I. Gutman , “The energy of a graph”, Berichte der mathematisch-statistischen sektion im forschungszentrum graz, vol. 103, pp. 1-22, 1978. [ Links ]

[6] S. Gong, X. Li , G. Xu , I. Gutman and B. Furtula, “Borderenergetic graphs”, MATCH Communications in mathematical and in computer chemistry , vol. 74, no. 2, pp. 321-332, 2015. [On line]. Available: https://bit.ly/2J5EfvWLinks ]

[7] X. Li , M. Wei andS. Gong , “A computer search for the borderenergetic graphs of order 10”, MATCH Communications in mathematical and in computer chemistry , vol. 74, no. 2, pp.333-342, 2015. [On line]. Available: https://bit.ly/35SQntZLinks ]

[8] Z. Shao, F. Deng, ”Correcting the number of borderenergetic graphs of order 10”, MATCH Communications in mathematical and in computer chemistry , vol. 75, no. 2, pp. 263-265, 2016. [On line]. Available: https://bit.ly/2qqbio4Links ]

[9] B. Furtula and I. Gutman, “Borderenergetic graphs of order 12”, Iranian journal of mathematical chemistry, vol. 8, no. 4, pp. 339-343, 2017, doi: 10.22052/IJMC.2017.87093.1290. [ Links ]

[10] S. Vaidya, K. Popat, “Some borderenergetic and equienergetic graphs of arbitrarily large order”, Communicated, 2000. [ Links ]

Received: November 2018; Accepted: December 2018

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License