Servicios Personalizados
Revista
Articulo
Indicadores
-
Citado por SciELO
-
Accesos
Links relacionados
-
Citado por Google
-
Similares en SciELO
-
Similares en Google
Compartir
Proyecciones (Antofagasta)
versión impresa ISSN 0716-0917
Proyecciones (Antofagasta) vol.39 no.2 Antofagasta abr. 2020
http://dx.doi.org/10.22199/issn.0717-6279-2020-02-0016
Artículos
On rough convergence of triple sequence space of Bernstein operator of fuzzy numbers defined by a metric
1Hindustan Institute of Technology and Science, Dept. of Mathematics, Chennai, TN, India, e-mail: jeyarambharathi@yahoo.com
2Hindustan Institute of Technology and Science, Dept. of Mathematics, Chennai, TN, India, e-mail: ksvelmurugan.09@gmail.com
3SASTRA University, Dept. of Mathematics, Thanjavur, TN, India, e-mail: nsmaths@gmail.com
4SASTRA University, Dept. of Mathematics, Thanjavur, TN, India, e-mail: srikanth.sresam@gmail.com
We define the concept of rough limit set of a triple sequence space of Bernstein polynomials of fuzzy numbers and obtain the relation between the set of rough limit and the extreme limit points of a triple sequence space of Bernstein polynomials of fuzzy numbers. Finally, we investigate some properties of the rough limit set of Bernstein polynomials.
Keywords: Triple sequences; Rough convergence; Closed and convex; Cluster points and rough limit points; Fuzzy numbers; Bernstein polynomials
Acknowledgement
The authors are extremely grateful to the anonymous learned referee(s) for their keen reading, valuable suggestion and constructive comments for the improvement of the manuscript. The authors are thankful to the editor(s) and reviewers of Proyecciones Journal of Mathematics.
References
[1] S. Aytar, “Rough statistical convergence”, Numerical functional analysis and optimization, vol. 29, no. 3-4, pp. 291-303, Apr. 2008, doi: 10.1080/01630560802001064. [ Links ]
[2] S. Aytar, “The rough limit set and the core of a real sequence”, Numerical functional analysis and optimization , vol. 29, no. 3-4, pp. 283-290, May 2008, doi: 10.1080/01630560802001056 [ Links ]
[3] A. Esi, “On some triple almost lacunary sequence spaces defined by Orlicz functions”, Research and reviews: discrete mathematical structures, vol. 1, no. 2, pp. 16-25, 2014. [On line]. Available: https://bit.ly/3bzXom4 [ Links ]
[4] A. Esi and M. N. Catalbas, “Almost convergence of triple sequences”, Global journal of mathematical analysis, vol. 2, no. 1, 2014, doi: 10.14419/gjma.v2i1.1709 [ Links ]
[5] A. Esi and E. Savas, “On lacunary statistically convergent triple sequences in probabilistic normed space”, Applied mathematics & information sciences, vol. 9, no. 5, pp. 2529-2534, Sep. 2015. [On line]. Available: https://bit.ly/2yF0aHW [ Links ]
[6] A. Esi, S. Araci, and M. Acikgoz, “Statistical convergence of Bernstein operators”, Applied mathematics & information sciences , vol. 10, no. 6, pp. 2083-2086, Dec. 2016. [On line]. Available: https://bit.ly/34UJVTt [ Links ]
[7] A. Esi, S. Araci, and A. Esi, “λ-Statistical convergence of Bernstein polynomial sequences”, Advances and applications in mathematical sciences, vol. 16, no. 3, pp. 113-119, Jan. 2017. [On line]. Available: https://bit.ly/2XVlbsz [ Links ]
[8] A. Esi, N. Subramanian, and A. Esi , “On Triple sequence space of Bernstein operator of Rough I- convergence pre-cauchy sequences”, Proyecciones (Antofagasta, On line), vol. 36, no. 4, pp. 567-587, 2017, doi: 10.4067/S0716-09172017000400567. [ Links ]
[9] A. J. Datta, A. Esi , and B. C. Tripathy, “Statistically convergent triple sequence spaces defined by Orlicz function”, Journal of mathematical analysis, vol. 4, no. 2, pp. 16-22, 2013. [On line]. Available: https://bit.ly/353IulB [ Links ]
[10] S. Debnath, B. Sarma, and B. C. Das, “Some generalized triple sequence spaces of real numbers”, Journal of nonlinear analysis and optimization, vol. 6, no. 1, pp. 71-79, 2015. [On line]. Available: https://bit.ly/2VsTxBC [ Links ]
[11] E. Dündar and C. Cakan, “Rough I− convergence”, Demonstratio mathematica, Accepted. [ Links ]
[12] H. X. Phu, “Rough convergence in normed linear spaces”, Numerical functional analysis and optimization , vol. 22, no. 1-2, pp. 199-222, Mar. 2001, doi: 10.1081/NFA-100103794 [ Links ]
[13] H. X. Phu, “Rough continuity of linear operators”, Numerical functional analysis and optimization , vol. 23, no. 1-2, pp. 139-146, Jan. 2002, doi: 10.1081/NFA-120003675 [ Links ]
[14] H. X. Phu, “Rough convergence in infinite dimensional normed spaces”, Numerical functional analysis and optimization, vol. 24, no. 3-4, pp. 285-301, Jan. 2003, doi: 10.1081/NFA-120022923 [ Links ]
[15] A. Sahiner, M. Gurdal, and F. K. Duden, “Triple sequences and their statistical convergence”, Selçuk journal of applied mathematics, vol. 8, no. 2, pp. 49-55, 2007. [On line]. Available: https://bit.ly/2VvgnZy [ Links ]
[16] A. Sahiner , B. C. Tripathy , “Some I related properties of triple sequences”, Selçuk journal of applied mathematics , vol. 9, no. 2, pp. 9-18, 2008. [On line]. Available: https://bit.ly/3cDBpdX [ Links ]
[17] N. Subramanian andA. Esi , “The generalized tripled difference of χ3 sequence spaces”, Global Journal of mathematical analysis , vol. 3, no. 2, pp. 54-60, Mar. 2015, doi: 10.14419/gjma.v3i2.4412 [ Links ]
Received: February 28, 2018; Accepted: March 30, 2018