SciELO - Scientific Electronic Library Online

vol.39 número6A generalization of Fibonacci sequence índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.39 no.6 Antofagasta dic. 2020 


Trees with vertex-edge roman domination number twice the domination number minus one

1SASTRA University, Dept. of Mathematics, School of Arts, Science and Humanities, Tanjore, TN, India. e-mail:

2SASTRA University, Dept. of Mathematics, School of Arts, Science and Humanities, Tanjore, TN, India. e-mail:


A vertex-edge Roman dominating function (or just ve-RDF) of a graph G = (V, E) is a function f : V (G) → {0, 1, 2} such that for each edge e = uv either max{f (u), f (v)} ≠ 0 or there exists a vertex w such that either wu ∈ E or wv ∈ E and f (w) = 2. The weight of a ve-RDF is the sum of its function values over all vertices. The vertex-edge Roman domination number of a graph G, denoted by γ veR (G), is the minimum weight of a ve-RDF G. We characterize trees with vertexedge roman domination number equal to twice domination number minus one.

Keywords: Vertex-edge roman dominating set; Dominating set; Trees

Texto completo disponible sólo en PDF

Full text available only in PDF format.


The second author thanks DST SERB(MATRICS)- grant number MTR/2018/000234 for the support.


[1] H. A. Ahangar, J. Amjadi, M. Chellali, S. Nazari-Moghaddam, and S. M. Heikholeslami, “Trees with double roman domination number twice the domination number plus two”, Iranian journal of science and technology, transactions A: Science volume, vol. 43, pp. 1081-1088, Jun. 2019, doi: 10.1007/s40995-018-0535-7 [ Links ]

[2] R. Boutrig , M. Chellali , T. W. Haynes , and S. T. Hedetniemi , “Vertex-edge domination in graphs”, Aequationes mathematicae, vol. 90, no. 2, pp. 355-366, May 2015, doi: 10.1007/s00010-015-0354-2 [ Links ]

[3] M. Chellali and N. J. Rad, “Trees with unique Roman dominating functions of minimum weight”, Discrete mathematics, algorithms and applications, vol. 06, no. 03, Art ID 1450038, Jun. 2014, doi: 10.1142/S1793830914500384 [ Links ]

[4] E. J. Cockayne, P. A. Dreyer, S. M. Hedetniemi, and S. T. Hedetniemi, “Roman domination in graphs”, Discrete mathematics, vol. 278, no. 1-3, pp. 11-22, Mar. 2004, doi: 10.1016/j.disc.2003.06.004 [ Links ]

[5] B. Krishnakumari, Y. B. Venkatakrishnan, and M. Krzywkowski, “Bounds on the vertex-edge domination number of a tree”, Comptes rendus mathematique, vol. 352, no. 5, pp. 363-366, May 2014, doi: 10.1016/j.crma.2014.03.017 [ Links ]

[6] J. R. Lewis, S. T. Hedetniemi , T. W. Haynes, and G. H. Fricke, “Vertex-edge domination”, Utilitas mathematica, vol. 81, pp. 193-213, 2010. [ Links ]

[7] J. W. Peters, “Theoretical and algorithmic results on domination and connectivity”, Ph. D. Thesis, Clemson University 1986. , [On line]. Available: ]

[8] P. R. L. Pushpam and S. Padmapriea, “Global Roman domination in graphs”, Discrete applied mathematics, vol. 200, pp. 176-185, Feb. 2016, doi: 10.1016/j.dam.2015.07.014 [ Links ]

[9] E. N. Satheesh, “Some variations of domination and applications”, Ph. D. Thesis, Mahatma Gandhi University, 2014. [On line]. Available: ]

[10] X. Zhang, Z. Li, H. Jiang, and Z. Shao, “Double Roman domination in trees”, Information processing letters, vol. 134, pp. 31-34, Jun. 2018, doi: 10.1016/j.ipl.2018.01.004 [ Links ]

Received: May 31, 2019; Accepted: September 30, 2020

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License